
COMMODORE BASIC 3.5 MANUAL
version 2.1
by Janne Peräaho
(& Anders Persson)

● Copyright 1
● Introduction 1
● Manual Format 2

● Commands 3
● Functions 15
● Operators 32
● Statements 33
● Variables 64

● Basic Error Messages 67
● Disk Error Messages 72

● Basic Abbreviations 78

● Petascii codes 80
● Musical Note Table 83

● Authors 84
● Related Documents 84
● References 84

 COPYRIGHT

 Commodore BASIC, version 3.5. Copyright © 1984 Commodore Electronics Limited.
 Commodore BASIC, version 3.5. Copyright © 1977 Microsoft.

 Commodore 16 Käyttäjän opas. Copyright © PET-COMMODORE INC./Oy PCI-Data Ab.
 Commodore 16 User Manual. Copyright © 1984 Commodore Electronics Limited.
 Commodore 64 Käyttäjän opas. Copyright © 1985 PET-COMMODORE INC./Oy PCI-Data Ab.
 Kaikki kuusnelosesta, 3. painos. Copyright © 1983 Robert J. Brady Company.
 Kaikki kuusnelosesta, 3. painos. Copyright © 1985 Amer-yhtymä Oy AMERSOFT.

 INTRODUCTION

 Basic is a high level language which is based on the following six
 concepts: commands, statements, functions, variables, operators, and
 expressions.

 Commands and statements are instructions to the computer to perform a
 certain task (for example an instruction to load a basic program into
 memory). The difference between them is that Basic commands are intented
 to be used in direct mode, while statements should be used in programs.
 However, in most cases commands can be used as statements in a program if
 you prefix them with a line number. You can also use several statements as
 commands by using them in direct mode (i.e. without line numbers).

 A function performs a simple task, based on a given arguments, and it
 always replies with a value - a result.

 Operators are used for calculations, for determining
 equalities/inequalities, and for logical operations. For example + is an
 operator used for addition.

1

 Expressions are clauses composed of constants, variables, and/or
 operators. For example A+B*3 is a valid expression.

 This manual's purpose is to provide detail information about presented
 Basic elements. I hope you find it useful.

 MANUAL FORMAT

 The Commodore BASIC 3.5 manual is divided into seven sections:

 Commands : the commands used for working with programs to edit,
 store, and erase them.
 Functions : the string, numeric, and print functions.
 Operators : the arithmetic and logical operators.
 Statements : the BASIC program statements used in numbered lines of
 programs.
 Variables : the different types of variables and legal variable
 names.
 Basic errors: the error messages given by BASIC.
 Disk errors : the error messages given by a disk drive.
 store, and erase them.

 The items presented in sections follow consistent format convensions to
 make them as clear as possible. In most cases, there are several examples
 to illustrate what the actual command, function or statement looks like.

 The syntax of items are described by using the following consepts:

 KEYWORDS appear in uppercase letters. You must type keywords exactly
 as they appear!

 ARGUMENTS appear within angle brackets. Arguments are parts that you
 select.

 SQUARE BRACKETS ([]) show optional arguments. You select any or none
 of the arguments listed.

 VERTICAL BAR (|) separates lists of options from which you can choose
 only one.

 A SEQUENCE OF THREE DOTS (...) means that an option or argument can
 be repeated more than once.

 QUOTATION MARKS ("") enclose character strings, file names, and
 other expressions. When arguments are enclosed in quotation marks in
 a format, you must include the quotation marks in your command,
 function, or statement. Quotation marks are required parts of a
 command, function or statement.

 PARENTHESES (()). When arguments are enclosed in parentheses in a
 format, you must include the parentheses in your command, function,
 or statement.

2

 COMMANDS
 AUTO
 BACKUP
 COLLECT
 CONT
 COPY
 DELETE
 DIRECTORY
 DLOAD
 DSAVE
 HEADER
 HELP
 KEY
 LIST
 LOAD
 NEW
 RENAME
 RENUMBER
 RUN
 SAVE
 SCRATCH
 VERIFY

 command/AUTO command/AUTO

 NAME
 AUTO -- Controls the automatic line numbering

 ABBREVIATION
 a <shift> U

 SYNOPSIS
 AUTO [<line>]

 FUNCTION
 Turns on the automatic line numbering feature which eases the job of
 entering programs by typing the line numbers for you. As you enter each
 program line and press <return> the next line number is printed on the
 screen, with the cursor in position to begin typing that line. AUTO with
 no argument turns off auto line numbering, as does RUN.

 INPUTS
 <line> - increment between line numbers

 RESULT
 With argument turns on automatic line numbering.
 With no argument turns off auto line numering.

 EXAMPLES
 AUTO 10
 Automatically numbers line in increments of ten.

 AUTO 50
 Automatically numbers line in increments of fifty.

 AUTO
 Turns off automatic line numbering.

 NOTES
 This statement is executable only in direct mode.

 BUGS
 None

 command/BACKUP command/BACKUP

 NAME
 BACKUP -- Copies all the files on a disk to another disk

3

 ABBREVIATION
 b <shift> A

 SYNOPSIS
 BACKUP D<src_drive> TO D<trg_drive>[,ON U<unit>]

 FUNCTION
 This command copies all the files on a disk to another disk on a dual
 drive system. You can copy onto a new disk without first using the
 HEADER command to format the new disk because the BACKUP command copies
 all the information on the disk, including the format. You should always
 BACKUP important disks in case the original is lost or damaged.
 Because the BACKUP command also HEADERS disks, it destroys any
 information on the disk onto which you're copying information. So if
 you're backing up onto a previously used disk, make sure it contains no
 programs you wish to keep.

 INPUTS
 <src_drive> - source drive number
 <trg_drive> - target drive number
 <unit> - target drive unit number

 RESULT
 The contents of the source disk is copied to the target disk.

 EXAMPLES
 BACKUP D0 TO D1
 Copies all files from the disk in drive 0 to the disk in drive 1.

 BACKUP DO TO D1, ON U9
 Copies all files from drive 0 to drive 1 in disk drive unit 9.

 NOTES
 This command can only be used with dual disk drive.

 BUGS
 -

 command/COLLECT command/COLLECT

 NAME
 COLLECT -- Deletes references to improperly closed files

 ABBREVIATION
 col <shift> L

 SYNOPSIS
 COLLECT [D<drive>][,ON U<unit>]

 FUNCTION
 Use this command to free up space allocated to improperly closed files
 and deletes references to these files from the directory.

 INPUTS
 <drive> - target drive number
 <unit> - target drive unit number

 RESULT
 Frees up disk space allocated to improperly closed files.

 EXAMPLES
 COLLECT D0

 NOTES
 None

 BUGS
 None

 None

 command/CONT command/CONT

 NAME

4

 CONT -- Re-start the execution of a program that has been stopped

 ABBREVIATION
 c <shift> O

 SYNOPSIS
 CONT

 FUNCTION
 This command is used to re-start the execution of a program that has
 been stopped by either using the STOP statement, or an END statement
 within the program.

 INPUTS
 None

 RESULT
 The program will resume execution where it left off.

 EXAMPLES
 CONT

 NOTES
 CONT will not work if you have changed or added lines of the program
 (or even just moved the cursor to a program line and hit <return>
 without changing anything), if the program stopped due to an error, or
 if you caused an error before trying to re-start the program.

 BUGS
 None

 command/COPY command/COPY

 NAME
 COPY -- Copies a file

 ABBREVIATION
 co <shift> P

 SYNOPSIS
 COPY [D<src_drive>,]"<src_file>" TO [D<trg_drive>,]"<trg_file>"
 [,ON U<unit>]

 FUNCTION
 Copies a file on the disk in one drive (the source file) to the disk in
 the other on dual disk drive only, or creates a copy of a file on the
 same drive (with a different file name).

 INPUTS
 <src_drive> - source drive number
 <src_file> - source file name
 <trg_drive> - target drive number
 <trg_file> - target file name
 <unit> - target drive unit number

 RESULT
 A copy of a file is created.

 EXAMPLES
 COPY D0,"NOON" TO D1,"NIGHT"
 Copies NOON from drive 0 to drive 1, renaming it NIGHT.

 COPY D0,"STUFF" TO D1,"STUFF"
 Copies STUFF from drive 0 to drive 1.

 COPY D0 TO D1
 Copies all files from drive 0 to drive 1.

 COPY "CATS" TO "DOGS"
 Copies CATS as a program called DOGS on the same drive.

 NOTES
 None

 BUGS
 None

5

 command/DELETE command/DELETE

 NAME
 DELETE -- Deletes lines of BASIC text

 ABBREVIATION
 de <shift> L

 SYNOPSIS
 DELETE [<first_line>][-<last_line>]

 FUNCTION
 Deletes lines of BASIC text.

 INPUTS
 <first_line> - first line to be deleted
 <last_line> - last line to be deleted

 RESULT
 Deletes lines of BASIC text.

 EXAMPLES
 DELETE 75
 Deletes line 75.

 DELETE 10-50
 Deletes lines 10 through 50 inclusive.

 DELETE -50
 Deletes all lines from the beginning of the program up to and
 including line 50.

 DELETE 75-
 Deletes all lines from 75 on to the end of the program.

 NOTES
 This command can be executed only in direct mode.

 BUGS
 None

 command/DIRECTORY command/DIRECTORY

 NAME
 DIRECTORY -- Displays a disk directory

 ABBREVIATION
 di <shift> R

 SYNOPSIS
 DIRECTORY [D<drive>][,U<unit>][,"<file>"]

 FUNCTION
 Displays a disk directory on the screen. Use <ctrl>-S to pause the
 display (any other key restarts the display after a pause). Use the C=
 key (the Commodore key) to slow it down.

 INPUTS
 <drive> - drive number
 <unit> - drive unit number
 <file> - file name and/or pattern

 RESULT
 Lists all files or files matching the given pattern.

 EXAMPLES
 DIRECTORY
 List all files on the disk.

 DIRECTORY D1, U9, "WORK"
 Lists the file on disk drive unit 9 (8 is default), drive 1, named
 WORK.

 DIRECTORY "AB"
 Lists all files starting with the letters "AB", like ABOVE, ABOARD,
 etc.

6

 DIRECTORY D0, "FILE ?.BAK"
 The ? is a wild-card that matches any single character in that
 position: FILE 1.BAK, FILE 2.BAK, FILE 3.BAK all match the string.

 NOTES
 The DIRECTORY command cannot be used to print a hard copy. You must load
 the disk directory (destroying the program currently in memory) to do
 that.

 To print out the DIRECTORY of drive 0, unit 8, use the following:

 LOAD"$0",8
 OPEN4,4:CMD4:LIST
 PRINT#4:CLOSE4

 BUGS
 None

 None

 command/DLOAD command/DLOAD

 NAME
 DLOAD -- Loads a program from disk into a memory

 ABBREVIATION
 d <shift> L

 SYNOPSIS
 DLOAD "<file>"[,D<drive>][,U<unit>]

 FUNCTION
 This command loads a program from disk into a memory. (Use LOAD to load
 programs on tape.) You must supply a file name.

 INPUTS
 <file> - file name and/or pattern
 <drive> - drive number
 <unit> - drive unit number

 RESULT
 A program is loaded from disk into a memory.

 EXAMPLES
 DLOAD "DTRUCK"
 Searches the disk for the program "DTRUCK" and LOADs it.

 DLOAD (A$)
 LOADs a program from disk whose name is in the variable A$. You will
 get an error if A$ is empty.

 NOTES
 The DLOAD command can be used within a BASIC program to find and RUN
 another program on disk. This is called chaining.

 BUGS
 None

 command/DSAVE command/DSAVE

 NAME
 DSAVE -- Stores a program on disk

 ABBREVIATION
 d <shift> S

 SYNOPSIS
 DSAVE "<file>"[,D<drive>][,U<unit>]

 FUNCTION
 This command stores a program on disk. (Use SAVE to store programs on
 tape.) You must supply a file name.

 INPUTS
 <file> - file name and/or pattern
 <drive> - drive number

7

 <unit> - drive unit number

 RESULT
 A program is stored on a disk.

 EXAMPLES
 DSAVE "DDAY"
 SAVEs the program "DDAY" to disk.

 DSAVE (A$)
 SAVEs to disk program whose name is in the variable A$.

 DSAVE "PROG 3",D0,U9
 SAVEs the program "PROG 3" to the disk drive with a unit number of 9

 NOTES
 None

 BUGS
 None

 command/HEADER command/HEADER

 NAME
 HEADER -- Formats a disk

 ABBREVIATION
 he <shift> A

 SYNOPSIS
 HEADER "<diskname>",D<drive>[,I<id>][,ON U<unit>]

 FUNCTION
 Before you can use a new disk for the first time you must format it with
 the HEADER command. If you want to erase an entire disk for re-use you
 can use the HEADER command. This command divides the disk into sections
 called blocks, and it creates a table of contents, called a directory or
 catalog, on the disk. The diskname can be any name up to 16 characters
 long. The id number is any 2 characters. Give each disk a unique id
 number. Be careful when you HEADER a disk because the HEADER command
 erases all stored data. Giving no id number allows you to perform a
 quick header. The old id number is used. You can only use the quick
 header method if the disk was previously formatted, since the quick
 header only cleans out the directory rather than formatting the disk.

 INPUTS
 <diskname> - name for the disk (max length 16 characters)
 <drive> - drive number
 <id> - disk identification number (max length 2 characters)
 <unit> - drive unit number

 RESULT
 A ready to use empty disk.

 EXAMPLES
 HEADER "MYDISK",I23,D0

 HEADER "THEBALL",I45,D1,U8

 NOTES
 None

 BUGS
 None

 command/HELP command/HELP

 NAME
 HELP -- Displays the erroneous program line

 ABBREVIATION
 None

 SYNOPSIS
 HELP

8

 FUNCTION
 The HELP command is used after you get an error in your program. When
 you type HELP, the line where the error occured is listed, with the
 portion containing the error displayed in flashing characters.

 INPUTS
 None

 RESULT
 Displays the line which has caused the last error. The portion
 containing the error is displayed in flashing characters.

 EXAMPLES
 HELP

 NOTES
 None

 BUGS
 None

 None

 command/KEY command/KEY

 NAME
 KEY -- Assigns a string into a function key

 ABBREVIATION
 k <shift> E

 SYNOPSIS
 KEY [<key>,<string>]

 FUNCTION
 There are eight (8) function keys available to the user on your
 Commodore 16 computer: four unshifted and four shifted. Your Commodore
 16 allows you to define what each key does when pressed. KEY without any
 parameter specified gives a listing displaying all the current KEY
 assignments. The data you assign to a key is typed out when that
 function key is pressed. The maximum length for all the definitions
 together is 128 characters. Entire commands (or a series of commands)
 can be assigned to a key.

 INPUTS
 <key> - function key number (1-8)
 <string> - string to be assigned into a key

 RESULT
 Shows current function key bindings or assigns a string into a function
 key.

 EXAMPLES
 KEY 7,"GRAPHICS0"+CHR$(13)+"LIST"+CHR$(13)
 Causes the computer to select text mode and list your program
 whenever the "F7" key is pressed (in direct mode). The CHR$(13) is
 the ASCII character for <return>.

 NOTES
 Use CHR$(34) to incorporate a double quote into a KEY string.
 The keys may be redefined in a program. For Example:

 10 KEY2,"TESTING"+CHR$(34):KEY3,"NO"

 To define function keys as they are on the Commodore 64 and VIC 20:

 10 FOR I=1 TO 8:KEY I,CHR$(I+132):NEXT

 To restore all function keys to their default values, reset your
 Commodore 16 by turning it off and on, or press the RESET button.

 BUGS
 None

 None

 command/LIST command/LIST

9

 NAME
 LIST -- Lets you look at lines of a BASIC program

 ABBREVIATION
 l <shift> I

 SYNOPSIS
 LIST [<first_line>][-[<last_line>]]

 FUNCTION
 The LIST command lets you look at lines of a BASIC program that have
 been typed or LOADed into the computer's memory. When LIST is used alone
 (without any numbers following it), you get a complete LISTing of the
 program on your screen, which may be slowed down by holding the C= key
 (Commodore key), paused by <ctrl>-S (unpaused by pressing any other
 key), or STOPed by pressing the <run/stop> key. If you follow the word
 LIST with a line number, your computer only shows that line number. If
 you type LIST with two numbers separated by a dash, the computer shows
 all lines from the first to the second line number. If you type LIST
 followed by a number and just a dash, it shows all the lines from that
 number to the end of the program. And if you type LIST, a dash, and then
 a number, you get all the lines from the beginning of the program to
 that line number. Using these variations, you can examine any portion of
 a program, or easily bring lines to the screen for modification.

 INPUTS
 <first_line> - first BASIC line to be shown
 <last_line> - last BASIC line to be shown

 RESULT
 Brings BASIC program lines to the screen.

 EXAMPLES
 LIST
 Shows entire program.

 LIST 100-
 Shows from line 100 until the end of the program.

 LIST 10
 Shows only line 10.

 LIST -100
 Shows lines from the beginning until line 100.

 LIST 10-200
 Shows lines from 10 to 200, inclusive.

 NOTES
 None

 BUGS
 None

 None

 command/LOAD command/LOAD

 NAME
 LOAD -- Loads a program from storage device into a memory

 ABBREVIATION
 l <shift> O

 SYNOPSIS
 LOAD ["<file>"[,<device>][,<rel_flag>]]

 FUNCTION
 This is the command to use when you want to use a program stored on tape
 or on disk. If you type just LOAD and hit the <return> key the computer
 screen goes blank. Press play, and the computer starts looking for a
 program on the tape. When it finds one, the computer prints
 "FOUND <filename>". You can hit the C= key (Commodore key) to LOAD; if
 you don't press the key, the computer resumes searching on the tape
 after a brief interval. Once the program is LOADed, you can RUN, LIST,
 or change it.
 You can also type the word LOAD followed by a program name, which is
 most often a name in quotes ("<program_name>"). The name may be followed
 by a comma (outside of the quotes) and a number (or numeric variable),

10

 which acts as a device number to determine where the program is stored
 (disk or tape). If there is no number given, your computer assumes
 device number 1.
 The LOAD command can be used within a BASIC program to find and RUN the
 next program on tape. This is called chaining.
 The relocate flag (<rel_flag>) determines where in memory a program is
 loaded. A relocate flag of 0 tells the computer to load the program at
 the start of the BASIC program area, and a flag of 1 tells it to LOAD
 from the point where it was SAVEd. The default value of the relocate
 flag is 0.

 INPUTS
 <file> - file name and/or pattern to be loaded
 <device> - storage device number
 <rel_flag> - relocate flag (0 or 1)

 RESULT
 A program is loaded from storage device into a memory.

 EXAMPLES
 LOAD
 Reads in the next program on tape.

 LOAD "BASES"
 Searches tape for a program called BASES, and LOADS it if it is
 found.

 LOAD A$
 Looks for a program whose name is in the variable called A$.

 LOAD "BRIDGES",8
 Looks for the program called BRIDGES on the disk drive, and LOADs it
 if found.

 NOTES
 Device 1: Tape.
 Device 8: Disk.

 Relocate flag of 1 is generally used only when loading machine language
 programs.

 BUGS
 None

 command/NEW command/NEW

 NAME
 NEW -- Erases BASIC program in memory

 ABBREVIATION
 None

 SYNOPSIS
 NEW

 FUNCTION
 This command erases the entire program in memory and clears out any
 variables that may have been used. Unless the program was stored
 somewhere, it is lost until you type it in again. Be careful when you
 use this command.
 The NEW command can also be used as a statement in a BASIC program. When
 your computer gets to this line, the program is erased and everything
 stops. This is not especially useful under normal circumstances.

 INPUTS
 None

 RESULT
 BASIC program is erased from memory and all variables are cleared out.

 EXAMPLES
 NEW

 NOTES
 None

 BUGS
 None

11

 command/RENAME command/RENAME

 NAME
 RENAME -- Renames a file

 ABBREVIATION
 re <shift> N

 SYNOPSIS
 RENAME [D<drive>,]"<old_filename>" TO "<new_filename>"[,U<unit>]

 FUNCTION
 Used to rename a file on a disk.

 INPUTS
 <drive> - drive number
 <old_filename> - original file name
 <new_filename> - new file name
 <unit> - drive unit number

 RESULT
 Renamed file.

 EXAMPLES
 RENAME D0,"ASSET" TO "LIABILITY"
 Changes the name of the file from ASSET to LIABILITY.

 NOTES
 None

 BUGS
 None

 None

 command/RENUMBER command/RENUMBER

 NAME
 RENUMBER -- Renumbers program lines

 ABBREVIATION
 ren <shift> U

 SYNOPSIS
 RENUMBER [<new_line>[,<increment>[,<start_line>]]]

 FUNCTION
 This command renumbers BASIC program lines beginning from the first line
 (set as 10) renumbering in increments of 10 at the end of the program.
 You can supply starting line (<start_line>), spacing between line
 numbers (<increment>), and/or first line number (<new_line>).
 The first line number is the number of the first line in the program
 after renumbering (default is 10). The increment is the spacing between
 line numbers, i.e. 10, 20, 30 etc. (It also defaults to 10.). The first
 line number is the line number in the program where renumbering is to
 begin. This allows you to renumber a portion of your program. It
 defaults to the first line of your program.

 INPUTS
 <new_line> - line number which replaces the start line number
 (<start_line>). Default line number is 10.
 <increment> - spacing between line numbers (default is 10)
 <start_line> - line number where renumbering starts (default is the
 first line)

 RESULT
 Renumbered program line(s).

 EXAMPLES
 RENUMBER 20,20,1
 Starting at line 1, renumbers the program. Line 1 becomes line 20,
 and other lines are numbered in increments of 20.

 RENUMBER ,,65
 Starting at line 65, renumbers in increments of 10. Line 65 becomes
 line 10 (unless there are already lines numbered 10-64, in which

12

 case the command is not carried out).

 NOTES
 This command can only be executed from direct mode.

 BUGS
 None

 None

 command/RUN command/RUN

 NAME
 RUN -- Executes a program

 ABBREVIATION
 r <shift> U

 SYNOPSIS
 RUN [<line>]

 FUNCTION
 Once program has been typed into memory or LOADed, the RUN command makes
 it start working. RUN clears all variables in the program before
 starting program execution. If there is no number following the command
 RUN, the computer starts with the lowest numbered program line. If there
 is a number following the RUN command execution starts at that line.

 INPUTS
 <line> - line number where program execution should start

 RESULT
 BASIC program is executed.

 EXAMPLES
 RUN
 Starts program working from lowest line number.

 RUN 100
 Starts program at line 100.

 NOTES
 RUN may be used within a program.

 BUGS
 None

 command/SAVE command/SAVE

 NAME
 SAVE -- Stores program in a storage device

 ABBREVIATION
 s <shift> A

 SYNOPSIS
 SAVE [<file>[,<device>[,<eot_flag>]]]

 FUNCTION
 This command stores a program currently in memory onto a tape or disk.
 If you just type the word SAVE and press <return>, your computer
 attempts to store the program on the tape. It has no way of checking if
 there is already a program on the tape in that location, so be careful
 with your tapes. If you type SAVE command followed by a name in quotes
 or a string variable name, the computer gives the program that name, so
 it may be more easily located and retrieved in the future. If you want
 to specify a device number for the SAVE, follow the name by a comma
 (after the quotes) and a number or numeric variable. After the number on
 a tape command, there can be a comma and a second number (0 or 1). If
 the second number is 1, the computer puts an END-OF-TAPE marker
 (<eot_flag>) after your program. If you are trying to LOAD a program and
 the computer finds one of these markers rather than the program you are
 trying to LOAD, you get a FILE NOT FOUND ERROR.

 INPUTS
 <file> - file name
 <device> - storage device number

13

 <eot_flag> - end-of-tape flag (0 or 1)

 RESULT
 The program currently in memory is stored in a storage device.

 EXAMPLES
 SAVE
 Stores program to tape without a name.

 SAVE "MONEY"
 Stores on tape with name MONEY.

 SAVE A$
 Stores on tape with name in variable A$.

 SAVE "YOURSELF",8
 Stores on disk with name YOURSELF.

 SAVE "GAME",1,1
 Stores on tape with name GAME and places an END-OF-TAPE marker after
 the program.

 NOTES
 Device 1: tape drive.
 Device 8: disk drive.

 BUGS
 None

 command/SCRATCH command/SCRATCH

 NAME
 SCRATCH -- Deletes a file from disk

 ABBREVIATION
 sc <shift> R

 SYNOPSIS
 SCRATCH "<file>"[,D<drive>][,U<unit>]

 FUNCTION
 Deletes a file from the disk directory. As a precaution, you are asked
 "Are you sure?" before your computer completes the operation. Type a Y
 to perform the SCRATCH or type N to cancel the operation. Use this
 command to erase unwanted files, to create more space on the disk.

 INPUTS
 <file> - file name and/or pattern to be deleted
 <drive> - drive number
 <unit> - drive unit number

 RESULT
 File is erased from the disk directory.

 EXAMPLES
 SCRATCH "MY BACK",D1
 Erases the file MY BACK from the disk in drive 1.

 NOTES
 None

 BUGS
 None

 command/VERIFY command/VERIFY

 NAME
 VERIFY -- Checks stored program against the one in memory

 ABBREVIATION
 v <shift> E

 SYNOPSIS
 VERIFY "<file>"[,<device>[,<rel_flag>]]

 FUNCTION

14

 This command causes your computer to check the program on tape or disk
 against the one in memory. This is proof that the program you just SAVEd
 is really saved, to make sure that nothing went wrong. This command is
 also very useful to position a tape so that your computer resumes
 writing following the end of the last program on the tape. All you do is
 tell the computer to VERIFY the name of the last program on the tape. It
 will do so, and tell you that the programs don't match (which you
 already knew). Now the tape is where you want it, and you can store the
 next program without fear of erasing an old one.
 VERIFY without anything after the command causes the computer to check
 the next program on tape, regardless of its name, against the program
 now in memory. VERIFY followed by a program name (in quotes) or a string
 variable searches the tape for that program and then checks its. VERIFY
 followed by a name and a comma and a number checks the program on the
 device with that number. The relocate flag (<rel_flag>) is the same as
 in the LOAD command.

 INPUTS
 <file> - file name and/or pattern to be checked
 <device> - storage device number
 <rel_flag> - relocate flag (0 or 1)

 RESULT
 Verification.

 EXAMPLES
 VERIFY
 Checks the next program on the tape.

 VERIFY "REALITY"
 Searches for REALITY on tape, checks against memory.

 VERIFY "ME",8,1
 Searches for ME on disk, then checks.

 NOTES
 Device 1: tape.
 Device 8: disk.

 BUGS
 None

FUNCTIONS
 ¶
 ABS
 ASC
 ATN
 CHR$
 COS
 DEC
 ERR$
 EXP
 FN
 FRE
 HEX$
 INSTR
 INT
 JOY
 LEFT$
 LEN
 LOG
 MID$
 PEEK
 POS
 RCLR
 RDOT
 RGR
 RIGHT$
 RLUM
 RND

15

 SGN
 SIN
 SPC
 SQR
 STR$
 TAB
 TAN
 USR
 VAL

 function/¶ function/¶

 NAME
 ¶ -- Returns the value of pi

 ABBREVIATION
 None

 SYNOPSIS
 ¶(<dummy>)

 FUNCTION
 The pi symbol, when used in an equation, has the value 3.14159265.

 INPUTS
 <dummy> - dummy argument and can be any value

 RESULT
 3.14159265 (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/ABS function/ABS

 NAME
 ABS -- Returns the magnitude of the numeric value

 ABBREVIATION
 a <shift> B

 SYNOPSIS
 ABS(<number>)

 FUNCTION
 The absolute value function returns the magnitude of the argument
 <number>.

 INPUTS
 <number> - numeric value

 RESULT
 Magnitude of the given number (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/ASC function/ASC

 NAME

16

 ASC -- Returns character's ASCII code

 ABBREVIATION
 a <shift> S

 SYNOPSIS
 ASC(<string>)

 FUNCTION
 This function returns the ASCII code (number) of the first character of
 <string>.

 INPUTS
 <string> - string

 RESULT
 ASCII code number of the first character of the given string (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/ATN function/ATN

 NAME
 ATN -- Returns arctangent

 ABBREVIATION
 a <shift> T

 SYNOPSIS
 ATN(<number>)

 FUNCTION
 Returns the angle whose tangent is <number>, measured in radians.

 INPUTS
 <number> - tangent (number)

 RESULT
 Angle measured in radians (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/CHR$ function/CHR$

 NAME
 CHR$ -- Returns a character in the base of ASCII code

 ABBREVIATION
 c <shift> H

 SYNOPSIS
 CHR$(<ascii_code>)

 FUNCTION
 This function returns a string character whose ASCII code is
 <ascii_code>.

 INPUTS
 <ascii_code> - character's ASCII code (0-255)

 RESULT

17

 Character corresponding the given ASCII code (string).

 EXAMPLES
 PRINT CHR$(65);CHR$(66);CHR$(67)
 ABC

 NOTES
 None

 BUGS
 None

 function/COS function/COS

 NAME
 COS -- Returns cosine value

 ABBREVIATION
 None

 SYNOPSIS
 COS(<angle>)

 FUNCTION
 Returns the value of the cosine of <angle>, where <angle> is an angle
 measured in radians.

 INPUTS
 <angle> - angle in radians

 RESULT
 Cosine value of an angle (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/DEC function/DEC

 NAME
 DEC -- Converts hexadecimal number to decimal

 ABBREVIATION
 None

 SYNOPSIS
 DEC(<string>)

 FUNCTION
 Returns decimal value of hexadecimal-string.

 INPUTS
 <string> - hexadecimal string (0000-FFFF)

 RESULT
 Decimal value of the given hexadecimal number (numeric).

 EXAMPLES
 N=DEC("F4")

 NOTES
 None

 BUGS
 None

 None

 function/ERR$ function/ERR$

18

 NAME
 ERR$ -- Returns string describing error condition

 ABBREVIATION
 e <shift> R

 SYNOPSIS
 ERR$(<err_condition>)

 FUNCTION
 This function returns string describing given error condition
 (<err_condition>).

 INPUTS
 <err_condition> - error condition number

 RESULT
 Error message (string).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/EXP function/EXP

 NAME
 EXP -- Raises constant e to the given power

 ABBREVIATION
 e <shift> X

 SYNOPSIS
 EXP(<power>)

 FUNCTION
 Returns the value of the mathematical constant e (2.71828183) raised to
 the power of <power>.

 INPUTS
 <power> - power (number)

 RESULT
 Raises constant e to the given power.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/FN function/FN

 NAME
 FN -- Calls user-defined function

 ABBREVIATION
 None

 SYNOPSIS
 FN<fnc_name>(<number>)

 FUNCTION
 Returns the value of the user-defined function <fnc_name> created in a
 DEF FN statement.

 INPUTS
 <fnc_name> - name of the user-defined function
 <number> - value to be passed to the function

19

 RESULT
 Returns the result of the called function (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/FRE function/FRE

 NAME
 FRE -- Returns the amount of available memory

 ABBREVIATION
 f <shift> R

 SYNOPSIS
 FRE(<dummy>)

 FUNCTION
 This function returns the number of unused bytes available in memory.

 INPUTS
 <dummy> - dummy argument and can be any value

 RESULT
 Amount of free memory in bytes.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/HEX$ function/HEX$

 NAME
 HEX$ -- Converts a decimal number into a hexadecimal one

 ABBREVIATION
 h <shift> E

 SYNOPSIS
 HEX$(<number>)

 FUNCTION
 This function returns a 4 character string containing the hexadecimal
 representation of value <number>.

 INPUTS
 <number> - value to be evaluated (0-65535)

 RESULT
 Hexadecimal representation of the given decimal value (string).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/INSTR function/INSTR

20

 NAME
 INSTR -- Searches for a substring

 ABBREVIATION
 in <shift> S

 SYNOPSIS
 INSTR(<string_1>,<string_2>[,<start_pos>])

 FUNCTION
 Returns position of string <string_2> in string <string_1> at or after
 the starting-position (<start_pos>). The starting-position defaults to
 the beginning of string <string_2>. If no match is found, a value of 0
 is returned.

 INPUTS
 <string_1> - string to be searched
 <string_2> - string to search
 <start_pos> - position where searching should start

 RESULT
 Returns position of the second string in the first string (numeric). If
 the string was not found, returns 0.

 EXAMPLES
 PRINT INSTR("THE CAT IN THE HAT","CAT")
 The result is 5, because CAT starts at the fifth character in the
 first string.

 NOTES
 None

 BUGS
 None

 None

 function/INT function/INT

 NAME
 INT -- Extracts the integer portion of a decimal number

 ABBREVIATION
 None

 SYNOPSIS
 INT(<number>)

 FUNCTION
 Returns the integer portion of <number>, with all decimal places to the
 right of the decimal point removed. The result is always less-than or
 equal to <number>. Thus, any negative numbers with decimal places become
 the integer less-than their current value (e.g. INT(-4.5)=-5).

 INPUTS
 <number> - number to be evaluated

 RESULT
 Integer part of a given number (numeric).

 EXAMPLES
 X=INT(X*100+.5)/100
 Rounds to the next highest penny.

 NOTES
 If the INT function is to be used for rounding off, the form is
 INT(<number>+.5) or INT(<number>-.5).

 BUGS
 None

 None

 function/JOY function/JOY

 NAME
 JOY -- Polls joystick port

21

 ABBREVIATION
 j <shift> O

 SYNOPSIS
 JOY(<port>)

 FUNCTION
 This function returns the state of joystick connected to port <port>.
 Any value returned of 128 or more means the fire button is also
 depressed. The direction is indicated as follows:

 UP FIRE

 1 128

 8 2

 LEFT 7 0 3 RIGHT

 6 4

 5

 DOWN

 INPUTS
 <port> - joystick port number (1-2)

 RESULT
 State of joystick (numeric).

 EXAMPLES
 100 J=JOY(2)
 If value of 135 returned, joystick in port 2 has turned to left with
 fire button.

 NOTES
 None

 BUGS
 None

 None

 function/LEFT$ function/LEFT$

 NAME
 LEFT$ -- Strips string from the right

 ABBREVIATION
 le <shift> F

 SYNOPSIS
 LEFT$(<string>,<length>)

 FUNCTION
 This function returns a string containing the leftmost <length>
 characters of string <string>.

 INPUTS
 <string> - source string
 <length> - number of characters to be included in result string

 RESULT
 String containing leftmost <length> characters of the string <string>.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/LEN function/LEN

22

 NAME
 LEN -- Returns the number of characters in the string

 ABBREVIATION
 None

 SYNOPSIS
 LEN(<string>)

 FUNCTION
 This function returns the number of characters (including spaces and
 other symbols) in the string <string>.

 INPUTS
 <string> - string to be evaluated

 RESULT
 Number of characters (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/LOG function/LOG

 NAME
 LOG -- Returns the natural log of the given number

 ABBREVIATION
 None

 SYNOPSIS
 LOG(<number>)

 FUNCTION
 This function returns the natural log of <number>. The natural log is
 log to the base e.

 INPUTS
 <number> - number to be evaluated

 RESULT
 Natural log of the given number.

 EXAMPLES
 None

 NOTES
 To convert to log base 10, divide by LOG(10).

 BUGS
 None

 function/MID$ function/MID$

 NAME
 MID$ -- Returns a substring

 ABBREVIATION
 m <shift> I

 SYNOPSIS
 MID$(<string>,<start_pos>,<length>)

 FUNCTION
 This function returns a string containing <length> characters, starting
 from the <start_pos> character in string <string>. MID$ can also be used
 on the left side of assignment statement as a pseudo-variable as well as
 a function.

23

 An error results if <start_pos>+<length> is greater than the length of
 the source string (<string>).

 INPUTS
 <string> - source string
 <start_pos> - starting position of the substring
 <length> - length of the substring to be extracted or length of the
 target area

 RESULT
 A string, which length is <length>, extracted from the source string
 (<string>) at the given position (<start_pos>).

 EXAMPLES
 Using MID$ as a pseudo-variable:

 10 A$="THE LAST GOODBYE"
 20 PRINT A$
 30 MID$(A$,6,3)="ONG"
 40 PRINT A$
 THE LAST GOODBYE
 THE LONG GOODBYE

 Using MID$ for extracting substring:

 10 PRINT MID$("THE LAST GOODBYE",10,4)
 GOOD

 NOTES
 None

 BUGS
 None

 function/PEEK function/PEEK

 NAME
 PEEK -- Gives contents of memory location

 ABBREVIATION
 p <shift> E

 SYNOPSIS
 PEEK(<address>)

 FUNCTION
 This function gives the contents of memory location <address>, where
 <address> is located in the range of 0 to 65535, returning a result from
 0 to 255. This is often used in conjunction with the POKE statement.

 INPUTS
 <address> - memory location (0-65535)

 RESULT
 Contents of the memory location (numeric).

 EXAMPLES
 PEEK(1024)

 NOTES
 None

 BUGS
 None

 function/POS function/POS

 NAME
 POS -- Current cursor x position

 ABBREVIATION
 None

 SYNOPSIS
 POS(<dummy>)

24

 FUNCTION
 This function returns the number of the column (0-39) where the next
 PRINT statement begins on the screen.

 INPUTS
 <dummy> - dummy argument and can be any value

 RESULT
 Cursor x position (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/RCLR function/RCLR

 NAME
 RCLR -- Returns color source's current color

 ABBREVIATION
 r <shift> C

 SYNOPSIS
 RCLR(<color_src>)

 FUNCTION
 This function returns current color assigned to source <color_src>.

 INPUTS
 <color_src> - color source (0-4):
 0 - background
 1 - foreground
 2 - multicolor 1
 3 - multicolor 2
 4 - border

 RESULT
 Returns current color: 1-16 (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/RDOT function/RDOT

 NAME
 RDOT -- Returns information about the current PC location

 ABBREVIATION
 r <shift> D

 SYNOPSIS
 RDOT(<info_flag>)

 FUNCTION
 This function returns information about the current position of the
 pixel cursor (PC) at XPOS/YPOS.

 INPUTS
 <info_flag> - required information:
 0 - current pixel cursor x position
 1 - current pixel cursor y position
 2 - color source used at current PC position

 RESULT

25

 Returns PC's current x position, y position, or color source used at
 current PC position (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/RGR function/RGR

 NAME
 RGR -- Returns current graphic mode

 ABBREVIATION
 r <shift> G

 SYNOPSIS
 RGR(<dummy>)

 FUNCTION
 This function returns current graphic mode.

 Mode Description

 0 normal text
 1 high-resolution graphics
 2 high-resolution graphics, split screen
 3 multicolor graphics
 4 multicolor graphics, split screen

 INPUTS
 <dummy> - dummy argument and can be any value

 RESULT
 Current graphic mode (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/RIGHT$ function/RIGHT$

 NAME
 RIGHT$ -- Strips string from the left

 ABBREVIATION
 r <shift> I

 SYNOPSIS
 RIGHT$(<string>,<length>)

 FUNCTION
 This function returns a string containing the right-most <length>
 characters of string <string>.

 INPUTS
 <string> - source string
 <length> - number of characters to be included in result string

 RESULT
 String containing right-most <length> characters of the string <string>.

 EXAMPLES
 None

 NOTES

26

 None

 BUGS
 None

 function/RLUM function/RLUM

 NAME
 RLUM -- Returns color source's current luminance

 ABBREVIATION
 r <shift> L

 SYNOPSIS
 RLUM(<color_src>)

 FUNCTION
 This function returns current luminance level assigned to color source
 <color_src>.

 INPUTS
 <color_src> - color source (0-4):
 0 - background
 1 - foreground
 2 - multicolor 1
 3 - multicolor 2
 4 - border

 RESULT
 Returns current luminance: 0-7 (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/RND function/RND

 NAME
 RND -- Generates a random number

 ABBREVIATION
 r <shift> N

 SYNOPSIS
 RND(<seed>)

 FUNCTION
 This function returns a random number between 0 and 1. This is useful in
 games, to simulate dice rolls and other elements of change, and is also
 used in some statistical applications. The first random number should be
 generated by the formula RND(-TI), to start things off differently every
 time. After this, the number in <seed> should be a 1, or any positive
 number. If <seed> is zero, RND is re-seeded from the hardware clock ever
 time RND is used. A negative value for <seed> seeds the random number
 generator using <seed> and gives a random number sequence. The use of
 the same negative number for <seed> as a seed results in the same
 sequence of random numbers. A positive value gives random numbers based
 on the previous seed.

 INPUTS
 <seed> - a seed, or what the random number is based on

 RESULT
 A random number between 0 and 1 (numeric).

 EXAMPLES
 100 X=INT(RND(1)*6)+INT(RND(1)*6)+2
 Simulates two dice.

 100 X=INT(RND(1)*1000)+1
 Number from 1-1000.

27

 100 X=INT(RND(1)*150)+100
 Number from 100 to 249.

 NOTES
 To simulate the rolling of a die, use the formula INT(RND(1)*6+1). First
 the random number from 0-1 is multiplied by 6, which expands the range
 to 0-6 (actually, greater than zero and less than six). Then 1 is added,
 making the range 1 to under 7. The INT function chops off all the
 decimal places, leaving the result as a digit from 1 to 6.
 To simulate 2 dice, add two of the numbers obtained by the above formula
 together.

 BUGS
 None

 None

 function/SGN function/SGN

 NAME
 SGN -- Returns number's sign

 ABBREVIATION
 s <shift> G

 SYNOPSIS
 SGN(<number>)

 FUNCTION
 This function returns the sign, as in positive, negative, or zero, of
 <number>. The result is:

 +1 if <number> is positive
 0 if <number> is zero
 -1 if <number> is negative

 INPUTS
 <number> - number to be evaluated

 RESULT
 Number's sign. -1 is returned if number was negative, 0 if number was
 zero, or 1 if number was positive (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/SIN function/SIN

 NAME
 SIN -- Returns sine value

 ABBREVIATION
 s <shift> I

 SYNOPSIS
 SIN(<angle>)

 FUNCTION
 This is the trigonometric sine function. The result is the sine of
 <angle>, where <angle> is an angle in radians.

 INPUTS
 <angle> - angle in radians

 RESULT
 Sine value of an angle (numeric).

 EXAMPLES
 <example_function_call>

28

 NOTES
 None

 BUGS
 None

 function/SPC function/SPC

 NAME
 SPC -- Skips over spaces

 ABBREVIATION
 s <shift> P

 SYNOPSIS
 SPC(<skip>)

 FUNCTION
 This function is used in the PRINT statement to skip over <skip> spaces.

 INPUTS
 <skip> - number of spaces to be skipped (0-255)

 RESULT
 Skips over <skip> spaces in the PRINT statement.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/SQR function/SQR

 NAME
 SQR -- Returns the square root

 ABBREVIATION
 s <shift> Q

 SYNOPSIS
 SQR(<number>)

 FUNCTION
 This function returns the square root of <number>, where <number> is a
 positive number or 0. If <number> is negative, an ILLEGAL QUANTITY ERROR
 results.

 INPUTS
 <number> - number to be evaluated

 RESULT
 Square root of the given number (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 None

 function/STR$ function/STR$

 NAME
 STR$ -- Converts number into a string

 ABBREVIATION
 st <shift> R

29

 SYNOPSIS
 STR$(<number>)

 FUNCTION
 This function converts a decimal number into a string.

 INPUTS
 <number> - number to be converted

 RESULT
 A string corresponding a given numeric value (string).

 EXAMPLES
 10 A=10.5
 20 PRINT A
 30 A$=STR$(A)
 40 PRINT A$
 10.5
 10.5

 NOTES
 None

 BUGS
 None

 function/TAB function/TAB

 NAME
 TAB -- Sets cursor's x position

 ABBREVIATION
 t <shift> A

 SYNOPSIS
 TAB(<column>)

 FUNCTION
 This function is used in the PRINT statement. The next item to be
 printed is in column number <column>.

 INPUTS
 <column> - cursor's x position (0-39)

 RESULT
 Sets cursor to the given column within the PRINT statement.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/TAN function/TAN

 NAME
 TAN -- Returns tangent value

 ABBREVIATION
 None

 SYNOPSIS
 TAN(<angle>)

 FUNCTION
 This function gives the tangent of <angle>, where <angle> is an angle in
 radians.

 INPUTS
 <angle> - angle in radians

 RESULT

30

 Tangent value of an angle (numeric).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 function/USR function/USR

 NAME
 USR -- Executes a machine language program with a parameter

 ABBREVIATION
 u <shift> S

 SYNOPSIS
 USR(<parameter>)

 FUNCTION
 When this function is used, the program jumps to a machine language
 program whose starting point is contained in memory locations 1281
 (lower byte of the 16 bit memory address) and 1282 (higher byte of the
 16 bit memory address). The parameter <parameter> is passed to the
 machine language program in the floating point accumulator. Another
 number is passed back to the BASIC program (by the machine language
 program) through the calling variable. In other words, this allows you
 to exchange a variable between machine code and BASIC.

 INPUTS
 <parameter> - numeric value to be passed to the machine language program

 RESULT
 USR calls a machine language program with a given numeric parameter.
 While exiting machine language program passes a another number back to
 the BASIC.

 EXAMPLES
 None

 NOTES
 I don't exactly know how the machine language program passes the value
 back to the BASIC. Maybe there is a special variable for this? I don't
 know.

 BUGS
 None

 function/VAL function/VAL

 NAME
 VAL -- Converts string into a number

 ABBREVIATION
 None

 SYNOPSIS
 VAL(<string>)

 FUNCTION
 This function converts the string (<string>) into a number, and is
 essentially the inverse operation from STR$. The string is examined from
 the left-most character to the right, for as many characters as are in
 recognizable number format. If the computer finds illegal characters,
 only the portion of the string up to that point is converted.

 INPUTS
 <string> - string containing a number

 RESULT
 Number corresponding the number given in string (numeric).

 EXAMPLES

31

 10 X=VAL("123.456")
 X=123.456

 10 X=VAL("3E03")
 X=3000

 10 X=VAL("12A13B")
 X=12

 10 X=VAL("RIUO17*")

 X=0

 10 X=VAL("-1.23.23.23")
 X=-1.23

 NOTES
 None

 BUGS
 None

 OPERATORS

 The arithmetic operators include the following signs:

 + addition
 - subtraction
 * multiplication
 / division
 ^ raising to a power (exponentation); ^ = up arrow

 On a line containing more tha one operator, there is a set order in
 which operations always occur. If several operators are used together,
 the computer assigns priorities as follows: First, exponentiation, then
 multiplication and division, and last, addition and subtraction. If two
 operations have the same priority, then calculations are performed in
 order from left to right. If you want these operations to occur in a
 different order, BASIC allows you to give a calculation a higher
 priority by placing parentheses around it. Operations enclosed in
 parentheses will be calculated before any other operation. You have to
 make sure that your equations have the same number of left parentheses
 as right parentheses, or you will get a SYNTAX ERROR message when your
 program is run.
 There are also operators for equalities and inequalities, called
 relational operators. Arithmetic operators always take priority over
 relational operators.

 = equal to
 < less than
 > greater than
 <= less than or equal to
 =< less than or equal to
 >= greater than or equal to
 => greater than or equal to
 <> not equal to
 >< not equal to

 Finally there are thee logical operators, with lower priority than both
 arithmetic and relational operators:

 AND
 OR
 NOT

 These are used most often to join multiple formulas in IF...THEN
 statements. When they are used with arithmetic operators, they are
 evaluated last (i.e., after + and -).

 Examples:

 IF A=B AND C=D THEN 100
 Requires both A=B & C=D to be true.

32

 IF A=B OR C=D THEN 100
 Allows either A=B or C=D to be true.

 A=5:B=4:PRINT A=B
 Displays a value of 0.

 A=5:B=4:PRINT A>B
 Displays a value of -1.

 PRINT 123 AND 15:PRINT 5 OR 7
 Displays 11 and 7.

 STATEMENTS
 BOX
 CHAR
 CIRCLE
 CLOSE
 CLR
 CMD
 COLOR
 DATA
 DEF
 DIM
 DO
 DRAW
 END
 FOR
 GET
 GET#
 GETKEY
 GOSUB
 GOTO
 GRAPHIC
 GSHAPE
 IF
 INPUT
 INPUT#
 LET
 LOCATE
 MONITOR
 NEXT
 ON
 OPEN
 PAINT
 POKE
 PRINT
 PRINT USING
 PRINT#
 PUDEF
 READ
 REM
 RESTORE
 RESUME
 RETURN
 SCALE
 SCNCLR
 SOUND
 SSHAPE
 STOP
 SYS
 TRAP
 TROFF
 TRON
 VOL
 WAIT

33

 statement/BOX statement/BOX

 NAME
 BOX -- Draws a rectangle

 ABBREVIATION
 b <shift> O

 SYNOPSIS
 BOX [<color_src>],<left>,<top>[,<right>,<bottom>][,<angle>[,<fill_flag>]

 FUNCTION
 This command allows you to draw a rectangle of any size anywhere on the
 screen. To get the default value, include a comma without entering a
 value. Rotation is based on the centre of the rectangle. The Pixel
 Cursor (PC) is left at <right>,<bottom> after the BOX statement is
 executed.

 INPUTS
 <color_src> - draw color source (0-3); default is 1 (foreground color)
 <left> - scaled corner coordinate
 <top> - scaled corner coordinate
 <right> - scaled corner coordinate
 <bottom> - scaled corner coordinate
 <angle> - box rotation in clockwise degrees; default is 0 degrees
 <fill_flag> - fill flag (0 or 1); default is 0 (no filling)

 RESULT
 Draws a rectangle.

 EXAMPLES
 BOX 1,10,10,60,60
 Draws the outline of a rectangle.

 BOX ,10,10,60,60,45,1
 Draws a filled, rotated box (a diamond).

 BOX ,30,90,,45,1
 Draws a filled, rotated polygon.

 NOTES
 None

 BUGS
 None

 statement/CHAR statement/CHAR

 NAME
 CHAR -- Prints string on a screen

 ABBREVIATION
 ch <shift> A

 SYNOPSIS
 CHAR [<color_src>],<left>,<top>,"<string>"[,<reverse_flag>]

 FUNCTION
 Text (alphanumeric strings) can be displayed on any screen at a given
 location by the CHAR command. Character data is read from the computer
 character ROM area. You supply the left (<left>) and top (<top>)
 coordinates of the starting position and the text string (<string>) you
 want to display, color (<color>) and reverse imaging (<reverse_flag>)
 are optional.
 The string is continued on the next line if it attempts to print past
 the right edge of the screen. When Used in TEXT mode, the string printed
 by the CHAR command works just like a PRINT string, including reverse
 field, cursors, flash on/off, etc. These control functions inside the
 string do not work when the CHAR command is used to display text in
 GRAPHIC mode.

 INPUTS
 <color_src> - printing color source (0-3)
 <left> - character column (0-39)
 <top> - character row (0-24)
 <string> - text to be printed
 <reverse_flag> - reverse field flag (0=off, 1=on)

34

 RESULT
 Prints given string on a screen at a given position.

 EXAMPLES
 CHAR 1,10,10,"HELLO!"

 NOTES
 None

 BUGS
 None

 statement/CIRCLE statement/CIRCLE

 NAME
 CIRCLE -- Draws a circle, ellipse, arc, triangle or an octagon

 ABBREVIATION
 c <shift> I

 SYNOPSIS
 CIRCLE [<color_src>][,<x>,<y>],<x_radius>[,[<y_radius>][,[<s_angle>]
 [,[<e_angle>][,[<rotation>][,<degrees>]]]]]

 FUNCTION
 With the CIRCLE command you can draw a circle, ellipse, arc, triangle or
 an octagon. The final coordinate (Pixel Cursor location) is on the
 circumference of the circle at the ending arc angle. Any rotation
 (<rotation>) is about the centre. Arcs are drawn from the starting angle
 (<s_angle>) clockwise to the ending angle (<e_angle>). The segment
 increment (<degrees>) controls the coarseness of the shape, with lower
 values for inc creating rounder shapes.

 INPUTS
 <color_src> - draw color source (0-3)
 <x> - scaled centre x-coordinate (defaults to Pixel Cursor, PC)
 <y> - scaled centre y-coordinate (defaults to Pixel Cursor, PC)
 <x_radius> - scaled x radius
 <y_radius> - scaled y radius (defaults to <x_radius>)
 <s_angle> - starting arc angle (default 0)
 <e_angle> - ending arc angle (default 360)
 <rotation> - rotation in clockwise degrees (default is 0 degrees)
 <degrees> - degrees between segments (default is 2 degrees)

 RESULT
 Draws a circle, ellipse, arc, triangle or an octagon.

 EXAMPLES
 CIRCLE,160,100,65,10
 Draws an ellipse.

 CIRCLE,160,100,65,50
 Draws an oval.

 CIRCLE,60,40,20,18,,,,45
 Draws an octagon.

 CIRCLE,260,40,20,,,,,90
 Draws a diamond.

 CIRCLE,60,140,20,18,,,,120
 Draws a triangle.

 NOTES
 None

 BUGS
 None

 statement/CLOSE statement/CLOSE

 NAME
 CLOSE -- Closes an open logical file

 ABBREVIATION

35

 cl <shift> O

 SYNOPSIS
 CLOSE <file>

 FUNCTION
 This command completes and closes any files used by OPEN statements.

 INPUTS
 <file> - file number to be closed

 RESULT
 Closes an open logical file.

 EXAMPLES
 CLOSE 2
 Logical file 2 is closed.

 NOTES
 None

 BUGS
 None

 statement/CLR statement/CLR

 NAME
 CLR -- Erases any variables in memory

 ABBREVIATION
 c <shift> L

 SYNOPSIS
 CLR

 FUNCTION
 This command erases any variables in memory, but leaves the program
 itself intact. This command is automatically executed when a RUN or NEW
 command is given, or when any editing is performed.

 INPUTS
 None

 RESULT
 Erases any variables in memory.

 EXAMPLES
 CLR

 NOTES
 None

 BUGS
 None

 statement/CMD statement/CMD

 NAME
 CMD -- Redirects output

 ABBREVIATION
 c <shift> M

 SYNOPSIS
 CMD <l_file>[,<w_list>]

 FUNCTION
 CMD sends the output which normally would go to the screen (i.e. PRINT
 statement, LISTs, but not POKEs into the screen) to another device
 instead. This could be a printer, or a data file on tape or disk. This
 device or file must be OPENed first. The CMD command must be followed by
 a number or numeric variable referring to the file (<l_file>).

 INPUTS
 <l_file> - logical file number
 <w_list> - UNKNOWN ARGUMENT!

36

 RESULT
 Redirects output.

 EXAMPLES
 10 OPEN 1,4
 20 CMD 1
 30 LIST
 40 PRINT#1
 50 CLOSE 1
 Line 10: OPENs device number 4, which is the printer.
 Line 20: All normal output now goes to the printer.
 Line 30: The LISTing goes to the printer, not the screen - even the
 word READY.
 Line 40: Set output back to the screen.
 Line 50: Close the file.

 NOTES
 None

 BUGS
 None

 None

 statement/COLOR statement/COLOR

 NAME
 COLOR -- Assigns a color to the color source

 ABBREVIATION
 co <shift> L

 SYNOPSIS
 COLOR <color_src>,<color>[,<luminance>]

 FUNCTION
 Assigns a color to one of the 5 color sources:

 Number Source

 0 background
 1 foreground
 2 multicolor 1
 3 multicolor 2
 4 border

 Colors you can use are in the range 1-16 (1 is black, 2 is white, 9 is
 orange, etc. from your keyboard color keys). As an option, you can
 include the luminance level 0-7, with 0 being lowest and 7 being
 highest. Luminance defaults to 7. Luminance lets you select from eight
 levels of brightness for any color exept black.

 INPUTS
 <color_src> - color source (0-4)
 <color> - color (1-16)
 <luminance> - luminance (0-7)

 RESULT
 Assigns a color to the color source.

 EXAMPLES
 COLOR 1,1

 NOTES
 None

 BUGS
 None

 None

 statement/DATA statement/DATA

 NAME
 DATA -- Declares data items

 ABBREVIATION

37

 d <shift> A

 SYNOPSIS
 DATA <item>[[,<item>][,<...>[,<item>]]]

 FUNCTION
 This statement is followed by a list of items to be used by READ
 statements. The items may be numbers or words, and are separated by
 commas. Words need not be inside of quote marks, unless they contain
 any of the following characters: space, colon, or comma. If two commas
 have nothing between them, the value will be READ as a zero for a
 number, or an empty string. The DATA statement must be part of a
 program, otherwise it will not be recognized. Also see the RESTORE
 statement, which allows your computer to reread data.

 INPUTS
 <item> - constant which will be declared as a data item

 RESULT
 Declares data items to be read by READ command.

 EXAMPLES
 DATA 100,200,FRED,"WILMA",,3,14,ABC123

 NOTES
 None

 BUGS
 None

 statement/DEF statement/DEF

 NAME
 DEF FN -- Defines a function

 ABBREVIATION
 d <shift> E

 SYNOPSIS
 DEF FN <fnc_name>(<variable>)=<expression>

 FUNCTION
 This command allows you to define a complex calculation as a function.
 In the case of a long formula that is used several times within a
 program, this can save a lot of space.
 The name you give the numeric function begins with the letters FN,
 followed by any legal numeric variable name (<fnc_name>). First you must
 define the function by using the statement DEF followed by the name
 (<fnc_name>) you've given the function. Following the name is a set of
 parentheses () with a numeric variable (<variable>) enclosed. Then you
 have an equal sign, followed by the formula (<expression>) you want to
 define. You can call the formula, substituting any number for a variable
 (<variable>).

 INPUTS
 <fnc_name> - name of the function
 <variable> - variable name used in the formula
 <expression> - formula

 RESULT
 Defines a function to be used within a program.

 EXAMPLES
 10 DEF FNA(X)=12*(34.75-X/.3)+X
 20 PRINT FNA(7)
 The number 7 is inserted each place X is located in the formula
 given in the DEF statement.

 NOTES
 DEF FN can only be used with standard numeric functions, not integer or
 string functions.

 BUGS
 None

 None

38

 statement/DIM statement/DIM

 NAME
 DIM -- Presents and reserves memory for an array

 ABBREVIATION
 d <shift> I

 SYNOPSIS
 DIM <variable>(<subscripts>)[,<variable>(<subscripts>)][,<...>
 [,<variable>(<subscripts>)]]

 FUNCTION
 Before you can use an array of variables, the program must first execute
 a DIM statement to establish the DIMensions of that array (unless there
 are 11 or fewer elements in the array). The statement DIM is followed by
 the name of the array (<variable>), which may be any legal variable
 name. Then, enclosed in parentheses, you put the number (or numeric
 variable) of elements (<subscripts>) in each dimension. An array with
 more than one dimension is called a matrix. You may use any number of
 dimensions, but keep in mind that the whole list of variables you are
 creating takes up space in memory, and it is easy to run out of memory
 if you get carried away. To figure the number of variables created with
 each DIM, multiply the total number of elements in each dimension of the
 array.
 You can dimension more than one array in a DIM statement by separating
 the arrays by commas. If the program executes a DIM statement for any
 array more than once, you'll get re'DIMed array error message. It is
 good programming practice to place DIM statements near the beginning of
 the program.

 INPUTS
 <variable> - array name (legal variable name)
 <subscripts> - number of elements in an array

 RESULT
 Presents and reserves memory for an array or arrays.

 EXAMPLES
 DIM A$(40),B7(15),CC%(4,4,4)
 ! ! !
 ! ! +- 125 Elements
 ! +--------- 16 Elements
 +---------------- 41 Elements

 NOTES
 Each array starts with element 0.
 Integer (single-digit) arrays take up 2/5ths of the space of floating
 point arrays.

 BUGS
 None

 None

 statement/DO statement/DO

 NAME
 DO -- Defines a program loop

 ABBREVIATION
 DO None
 EXIT None
 LOOP lo <shift> O
 UNTIL u <shift> N
 WHILE w <shift> H

 SYNOPSIS
 DO [UNTIL <bool_arg>|WHILE <bool_arg>] <statements> [EXIT]
 LOOP [UNTIL <bool_arg>|WHILE <bool_arg>]

 FUNCTION
 Performs the statements between the DO statement and the LOOP statement.
 If no UNTIL or WHILE modifies either the DO or the LOOP statement,
 execution of the intervening statements continues indefinitely. If an
 EXIT statement is encountered in the body of a DO loop, execution is
 transferred to the first statement following the LOOP statement. DO
 loops may be nested, following the rules defined for FOR-NEXT loops.
 If the UNTIL parameter is used, the program continues looping until the

39

 boolean argument is satisfied (becomes TRUE). The WHILE parameter is
 basically the opposite of the UNTIL parameter: the program continues
 looping as long as the boolean argument is TRUE.

 INPUTS
 <bool_arg> - boolean argument. For example A=1 or H>=57
 <statements> - statements to be executed

 RESULT
 Performs the statements between the DO statement and the LOOP statement
 forever or until WHILE or UNTIL condition is satisfied.

 EXAMPLES
 DO WHILE A$="":GETA$:LOOP

 NOTES
 None

 BUGS
 None

 statement/DRAW statement/DRAW

 NAME
 DRAW -- Draws dots, lines, and shapes

 ABBREVIATION
 d <shift> R

 SYNOPSIS
 DRAW [<color_src>][<x>,<y>,][[,]TO <x>,<y>][,<...>[,<x>,<y>]]

 FUNCTION
 With this command you can draw individual dots, lines, and shapes. You
 supply color source (<color_src>), starting and ending points (<x>,<y>).

 INPUTS
 <color_src> - draw color source (0-3); default is 1 (foreground color)
 <x> - scaled x coordinate
 <y> - scaled y coordinate

 RESULT
 Draws dots, lines, or shapes.

 EXAMPLES
 DRAW 1,100,50
 Draws a dot.

 DRAW ,10,10, TO 100,60
 Draws a line.

 DRAW TO 25,30
 Draws a line.

 DRAW ,10,10 TO 100,60 TO 10,10
 Draws a shape.

 NOTES
 None

 BUGS
 None

 statement/END statement/END

 NAME
 END -- Stops program execution

 ABBREVIATION
 e <shift> N

 SYNOPSIS
 END

 FUNCTION
 When the program executes an END statement, the program stops RUNing

40

 immediately. You may use the CONT command to restart the program at the
 statement following the END statement.

 INPUTS
 None

 RESULT
 Program stops running.

 EXAMPLES
 END

 NOTES
 None

 BUGS
 None

 statement/FOR statement/FOR

 NAME
 FOR -- Defines a program loop

 ABBREVIATION
 f <shift> O

 SYNOPSIS
 FOR <loop_var>=<start_val> TO <end_val> [STEP <increment>]

 FUNCTION
 This statement works with the NEXT statement to set up a section of the
 program that repeats for a set number of times. You may just want your
 computer to count up to a large number so the program pauses for a few
 seconds, in case you need something counted, or something must be done a
 certain number of times (such as printing).
 The loop variable (<loop_var>) is the variable that is added to or
 subtracted from during the FOR-NEXT loop. The start value (<start_val>)
 and the end value (<end_val>) are the beginning and ending counts for
 the loop variable.
 The logic of the FOR statement is as follows. First, the loop variable
 (<loop_var>) is set to the start value (<start_val>). When the program
 reaches a line with the command NEXT, it adds the STEP increment
 (<increment>) to the value of the loop variable and checks to see if it
 is higher than the end of loop value. If it is not higher, the next line
 executed is the statement immediately following the FOR statement. If
 the loop variable is larger than the end of loop number, then the next
 statement executed is the one following the NEXT statement.
 The end loop value may be followed by the word STEP and another number
 or variable. This allows you to count backwards, by fractions, or any
 way necessary.

 INPUTS
 <loop_var> - variable which holds the loop counter value
 <start_val> - start value for loop variable (<loop_var>)
 <end_val> - end value for loop variable (<loop_var>)
 <increment> - value to be added to or subtracted from loop variable

 RESULT
 Performs the statements between the FOR statement and the NEXT statement
 until the loop variable reaches the end value.

 EXAMPLES
 10 FOR L=1 TO 20
 20 PRINT L
 30 NEXT L
 40 PRINT "BLACKJACK! L="L
 Prints the numbers from one to twenty ob the screen, followed by the
 message BLACKJACK! L=21.

 10 FOR L=1 TO 100
 20 FOR A=5 TO 11 STEP 2
 30 NEXT A
 40 NEXT L
 FOR-NEXT loop with loop variable A is nested inside the larger one.

 NOTES
 STEP increment default value is 1.
 A STEP value can be positive or negative.

41

 You can set up loops inside one another. This is known as nesting loops.
 You must be careful to nest loops so that the last loop to start is the
 first one to end.

 BUGS
 None

 statement/GET statement/GET

 NAME
 GET -- Gets data from the keyboard

 ABBREVIATION
 g <shift> E

 SYNOPSIS
 GET <variable>

 FUNCTION
 The GET statement is a way to get data from the keyboard one character
 at a time. When the GET is executed, the character that was typed is
 received. If no character was typed, then a null (empty) character is
 returned, and the program continues without waiting for a key. There is
 no need to press the <return> key, and in fact the <return> key can be
 received with a GET.
 The word GET is followed by a variable name, usually a string variable.
 If a numeric ware used and any key other than a number was hit, the
 program would stop with an error message. The GET statement may also be
 put into a loop, checking for an empty result, which waits for a key to
 be struck to continue. The GETKEY statement could also be used in this
 case.

 INPUTS
 <variable> - acquired data will be stored in this variable

 RESULT
 Data acquired from the keyboard is stored in the target variable
 (<variable>).

 EXAMPLES
 10 GET A$:IF A$ <> "A" THEN 10
 This line waits for the "A" key to be pressed to continue.

 NOTES
 This command can only be executed within a program.

 BUGS
 None

 statement/GET# statement/GET#

 NAME
 GET# -- Gets data from a file or a device

 ABBREVIATION
 None

 SYNOPSIS
 GET# <file>,<variable>

 FUNCTION
 Used with a previously OPENed device or file to input one character at a
 time. Otherwise, it works like the GET statement.

 INPUTS
 <file> - file/device number to be read
 <variable> - acquired data will be stored in this variable

 RESULT
 Data acquired from the file/device is stored in the target variable
 (<variable>).

 EXAMPLES
 10 GET#1,A$

 NOTES

42

 This command can only be executed within a program.

 BUGS
 None

 statement/GETKEY statement/GETKEY

 NAME
 GETKEY -- Gets data from the keyboard

 ABBREVIATION
 getk <shift> E

 SYNOPSIS
 GETKEY <variable>

 FUNCTION
 The GETKEY statement is vary similar to the GET statement. Unlike the
 GET statement, GETKEY waits for the user to type a character on the
 keyboard. This lets it to be used easily to wait for a single character
 to be typed.

 INPUTS
 <variable> - acquired data will be stored in this variable

 RESULT
 Data acquired from the keyboard is stored in the target variable
 (<variable>).

 EXAMPLES
 10 GETKEY A$
 This line waits for a key to be struck. Typing any key will continue
 the program.

 NOTES
 This command can only be executed within a program.

 BUGS
 None

 statement/GOSUB statement/GOSUB

 NAME
 GOSUB -- Calls a subroutine

 ABBREVIATION
 go <shift> S

 SYNOPSIS
 GOSUB <line>

 FUNCTION
 This statement is like the GOTO statement, exept that your computer
 remembers where it came from. When a line with a RETURN statement is
 encountered, the program jumps back to the statement immediately
 following the GOSUB. The target of a GOSUB statement is called a
 subroutine. A subroutine is useful if there is a routine in your program
 that can be used by several different portions of the program. Instead
 of duplicating the section of program over and over, you can set it up
 as a subroutine, and GOSUB to it from the different parts of the program

 INPUTS
 <line> - line number where subroutine begins

 RESULT
 Program execution continues in a given subroutine (<line>) until RETURN
 statement is encountered.

 EXAMPLES
 20 GOSUB 800
 ...
 800 PRINT "HI THERE":RETURN
 Line 20 means: go to the subroutine beginning at line 800 and
 execute it.

 NOTES

43

 None

 BUGS
 None

 statement/GOTO statement/GOTO

 NAME
 GOTO -- Redirects program execution

 ABBREVIATION
 g <shift> O

 SYNOPSIS
 GOTO <line>
 GO TO <line>

 FUNCTION
 After a GOTO or GO TO statement is executed, the next line to be
 executed will be the one with the line number following the word GOTO.
 When used in direct mode, GOTO <line> allows you to start execution of
 the program at the given line number without clearing the variables.

 INPUTS
 <line> - line number where program execution should continue

 RESULT
 Program execution continues at the given line.

 EXAMPLES
 10 PRINT"REPETITION IS THE MOTHER OF LEARNING"
 20 GOTO 10
 The GOTO in line 20 causes line 10 to be run continuously, until the
 <run/stop> key is pressed.

 NOTES
 None

 BUGS
 None

 statement/GRAPHIC statement/GRAPHIC

 NAME
 GRAPHIC -- Changes graphic mode

 ABBREVIATION
 g <shift> R

 SYNOPSIS
 GRAPHIC <mode>[,<clr_flag>]

 FUNCTION
 This statement puts your computer in one of its 5 graphic modes:

 Mode Description

 0 normal text
 1 high-resolution graphics
 2 high-resolution graphics, split screen
 3 multicolor graphics
 4 multicolor graphics, split screen

 When executed, GRAPHIC (mode 1,2,3 or 4) allocates a 10KB bit-mapped
 area, and the BASIC text area is moved down below the hi-res area. This
 area remain allocated even if the user returns to TEXT mode (GRAPHIC 0).
 If 1 is given in the GRAPHIC statement as the second argument, the
 screen is also cleared.

 INPUTS
 <mode> - graphic mode (0-4)
 <clr_flag> - screen clear flag (0=off, 1=on)

 RESULT
 Changes graphic mode and clears screen if clear flag is on.

44

 EXAMPLES
 GRAPHIC 1,1
 Selects hi-res graphic mode and clears the screen.

 GRAPHIC 4,0
 Selects multicolor graphics with an area for text, without clearing
 the screen.

 NOTES
 None

 BUGS
 None

 statement/GSHAPE statement/GSHAPE

 NAME
 GSHAPE -- Displays a shape on a graphic screen

 ABBREVIATION
 g <shift> S

 SYNOPSIS
 GSHAPE <shape>[,[<x>,<y>][,<mode>]]

 FUNCTION
 A rectangular graphic clips can be displayed on a multicolor or high
 resolution graphics screen by the GSHAPE statement. If you type GSHAPE
 with the shape variable (<shape>) the shape will be drawn with the top
 left of the shape positioned at the pixel cursor. The shape variable may
 be followed by a graphic coordinates (<x> and <y>) and a replacement
 mode value (<mode>). The coordinates tell where the shape should be
 drawn on the screen and the mode value how it should be drawn.
 There are five possible replacement mode values:

 Mode Description

 0 place shape as is (default)
 1 place field inverted shape
 2 OR shape with area
 3 AND shape with area
 4 XOR shape with area

 In mode 0 the shape is drawn to the graphic screen as it is. In this
 mode shape overwrites completely the graphic area where it is drawn.
 In mode 1 the shape overwrites the graphic area just like in mode 0 but
 this time the overwriting shape is inverted.
 In mode 2 logical operation OR is executed with the shape data and the
 bit map to be replaced (the graphic area). Result is a transparent shape
 on top of the bit map.
 In mode 3 logical operation AND is executed with the shape data and the
 bit map to be replaced. Result is a shape filtered bit map.
 In mode 4 logical operation XOR is executed with the shape data and the
 bit map to be replaced. Result is a shape filtered bit map.

 INPUTS
 <shape> - string variable containing a shape to be drawn
 <x> - scaled x coordinate. The default display position is the PC
 (pixel cursor)
 <y> - scaled y coordinate. The default display position is the PC
 (pixel cursor)
 <mode> - replacement mode (0-4)

 RESULT
 Displays a shape on a graphic screen.

 EXAMPLES
 GSHAPE V$,,,1
 Displays V$ shape with background and foreground colors reversed,
 with the top left of the shape positioned at the pixel cursor (PC).

 NOTES
 None

 BUGS
 None

45

 statement/IF statement/IF

 NAME
 IF -- Conditional execution

 ABBREVIATION
 None

 SYNOPSIS
 IF <expression> THEN <clause> [:ELSE <clause>]

 FUNCTION
 IF-THEN lets the computer analyze a BASIC expression preceded by IF
 and take one of two possible courses of action. If the expression is
 true, the statement following THEN is executed. This expression may be
 any BASIC statement. If the expression is false, the program goes
 directly to the next line, unless an ELSE clause is present. The
 expression being evaluated may be a variable or formula, in which case
 it is considered true if nonzero, and false if zero. In most cases,
 there is an expression involving relational operators (=, <, >, <=, >=,
 <>, AND, OR, NOT).
 The ELSE clause, if present, must be in the same line as the IF-THEN
 part. When an ELSE clause is present, it is executed when the THEN
 clause isn't executed. In other words, the ELSE clause executes when the
 IF expression is FALSE.

 INPUTS
 <expression> - condition (BASIC expression resulting true or false value
 <clause> - statements to be executed

 RESULT
 If expression (<expression>) is true, statements following the word THEN
 will be executed and if expression is false, statements following the wo
 ELSE will be executed. If ELSE is not present, program goes directly to
 the next line.

 EXAMPLES

 THEN
 +-------+
 ! Print !
 ! "OK" !
 /+-------+
 Yes /
 /
 IF /
 +--------+ /
 X --------! Check: !/
 ! X>0? !\
 +--------+ \
 \
 \ ELSE
 No \ +-------+
 \! !
 ! End !
 +-------+

 50 IF X>0 THEN PRINT"OK":ELSE END
 Checks the value of X. If X is greater than 0, the THEN clause is
 executed, and the ELSE clause isn't. If X is not greater than 0, the
 ELSE clause is executed and the THEN clause isn't.

 NOTES
 None

 BUGS
 None

 None

 statement/INPUT statement/INPUT

 NAME
 INPUT -- Asks input from the user and stores acquired data

 ABBREVIATION
 None

46

 SYNOPSIS
 INPUT["<prompt>";]<variable>[,<...>,<variable>]

 FUNCTION
 The INPUT statement allows the computer to ask for data from the person
 running the program and place it into a variable or variables. The
 program stops, prints a question mark (?) on the screen, and waits for
 the person to type the answer and press the <return> key.
 The word INPUT is followed by a variable name (<variable>) or list of
 variable names separated by commas. There may be a message inside quotes
 before the list of variables to be input (<prompt>). If this message
 (called a prompt) is present, there must be a semicolon (;) after the
 closing quote of the prompt. When more than one variable is to be INPUT,
 they should be separated by commas when typed in. If not, the computer
 asks for the remaining values by printing two question marks (??). If
 you press <return> key without INPUTting values, the INPUT variables
 retain the values previously held for those variables.

 INPUTS
 <prompt> - prompt string
 <variable> - acquired data will be stored in this variable

 RESULT
 Asks input from the user and stores acquired data in the target
 variable(s).

 EXAMPLES
 10 INPUT "WHAT'S YOUR NAME";A$
 20 INPUT "AND YOUR FAVOURITE COLOR";B$
 30 INPUT "WHAT'S THE AIR SPEED OF A SWALLOW";A

 NOTES
 This statement can only be executed within a program.

 BUGS
 None

 statement/INPUT# statement/INPUT#

 NAME
 INPUT# -- Reads data from a file or a device

 ABBREVIATION
 i <shift> N

 SYNOPSIS
 INPUT#<file>,<variable>[,<...>,<variable>]

 FUNCTION
 This works like INPUT, but takes the data from a previously OPENed file
 or device. No prompt string is allowed.

 INPUTS
 <file> - file/device number to be read
 <variable> - acquired data will be stored in this variable

 RESULT
 Reads data from the file/device and stores acquired data in the target
 variable(s).

 EXAMPLES
 10 INPUT#2,A$,C,D$

 NOTES
 This statement can only be executed within a program.

 BUGS
 None

 statement/LET statement/LET

 NAME
 LET -- Sets a value to a variable

 ABBREVIATION
 l <shift> E

47

 SYNOPSIS
 LET <variable>=<expression>

 FUNCTION
 The word LET is hardly ever used in programs, since it is not necessary,
 but the statement itself is the heart of all BASIC programs. Whenever a
 variable is defined or given a value, LET is always implied. The
 variable name which is to get the result of a calculation is on the left
 side of the equal sign, and the number or formula is on the right side.

 INPUTS
 <variable> - name of the target variable
 <expression> - number or formula to be stored in variable (<variable>)

 RESULT
 Given value is stored to the given variable.

 EXAMPLES
 10 LET A=5
 20 B=6
 30 C=A*B+3
 40 D$="HELLO"
 LET is implied (but not necessary) in lines 20, 30, and 40.

 NOTES
 None

 BUGS
 None

 None

 statement/LOCATE statement/LOCATE

 NAME
 LOCATE -- Changes pixel cursor position

 ABBREVIATION
 lo <shift> C

 SYNOPSIS
 LOCATE <x>,<y>

 FUNCTION
 The LOCATE command lets you put the pixel cursor (PC) anywhere on the
 screen. The PC is the current location of the starting point of the next
 drawing. Unlike the regular cursor, you can't see the PC, but you can
 move it with the LOCATE command.
 You can find out where the PC is at any time by using the RDOT(0)
 function to get the x-coordinate and RDOT(1) to get the y-coordinate.
 The color source of the dot at the PC can be found by printing RDOT(2).
 (In all drawing commands where a color option is available, you may
 select a value from 0 to 3, corresponding to the background, foreground,
 multicolor 1, or multicolor 2 as the color source.)

 INPUTS
 <x> - scaled x coordinate
 <y> - scaled y coordinate

 RESULT
 Puts the pixel cursor at the given position.

 EXAMPLES
 LOCATE 160,100
 Positions the PC in the centre of the high resolution screen.

 NOTES
 None

 BUGS
 None

 statement/MONITOR statement/MONITOR

 NAME
 MONITOR -- Starts machine language monitor

48

 ABBREVIATION
 m <shift> O

 SYNOPSIS
 MONITOR

 FUNCTION
 This command takes you out of BASIC into the build-in machine language
 monitor program. The monitor is used to develop, debug, and execute
 machine language programs more easily than from BASIC.

 INPUTS
 None

 RESULT
 Starts machine language monitor.

 EXAMPLES
 MONITOR

 NOTES
 When in the monitor, typing an "X" and pressing <return> gets you back
 to BASIC. Also read the "tedmon.pdf" document for a description of all
 the monitor commands.

 BUGS
 None

 statement/NEXT statement/NEXT

 NAME
 NEXT -- Completes a FOR loop

 ABBREVIATION
 n <shift> E

 SYNOPSIS
 NEXT [<variable>[,<...>,<variable>]]

 FUNCTION
 The NEXT statement is used with the FOR statement. When the computer
 encounters a NEXT statement, it goes back to the corresponding FOR
 statement and check the loop variable. If the loop is finished,
 execution proceeds with the statement after the NEXT statement. The word
 NEXT may be followed by a variable name, a list of variable names
 separated by commas, or no variable names. If there are no names listed,
 the last loop started is the one being completed. If the variables are
 given, they are completed in order from left to right.

 INPUTS
 <variable> - name of the FOR loop variable

 RESULT
 Causes computer to go back to the corresponding FOR statement and check
 the FOR loop variable. Depending on loop variable value NEXT either
 exits the loop or repeats it once more.

 EXAMPLES
 10 FOR L=1 TO 10:NEXT
 20 FOR L=1 TO 10:NEXT L
 30 FOR L=1 TO 10:FOR M=1 TO 10:NEXT M,L

 NOTES
 None

 BUGS
 None

 statement/ON statement/ON

 NAME
 ON -- Redirects program execution conditionally

 ABBREVIATION
 None

49

 SYNOPSIS
 ON <expression> GOSUB <line>[,<...>,<line>]
 ON <expression> GOTO <line>[,<...>,<line>]

 FUNCTION
 This command can make the GOTO and GOSUB statements into special
 versions of the IF statement. The word ON is followed by a formula, then
 either GOTO or GOSUB, and a list of line numbers separated by commas. If
 the result of the calculation of the formula (<expression>) is 1, the
 first line (<line>) in the list is executed. If the result is 2, the
 second line number is executed, and so on. If the result is 0, or larger
 than the number of line numbers in the list, the next line executed is
 the statement following the ON statements. If the number is negative, an
 ILLEGAL QUANTITY ERROR results.

 INPUTS
 <expression> - BASIC expression resulting a numeric value
 <line> - line number where program execution should continue

 RESULT
 Program execution continues at the line chosen from the line number list
 according to a value determined by a BASIC expression (<expression>).

 EXAMPLES
 10 INPUT X:IF X<0 THEN 10
 20 ON X GOTO 50, 30, 30, 70
 25 PRINT "FELL THROUGH":GOTO 10
 30 PRINT "TOO HIGH":GOTO 10
 50 PRINT "TOO LOW":GOTO 10
 70 END
 When X = 1, ON sends control to the first line number in the list
 (50). When X = 2, ON sends control to the second line (30), etc.

 NOTES
 None

 BUGS
 None

 statement/OPEN statement/OPEN

 NAME
 OPEN -- Opens a logical file for I/O operations

 ABBREVIATION
 o <shift> P

 SYNOPSIS
 OPEN <file>[,<device>[,<address>[,"<command>,<type>,<mode>"]]]

 FUNCTION
 The OPEN statement allows your computer to access devices such as the
 tape and disk for data, a printer, or even the screen. The word OPEN is
 followed by a logical file number (<file>), which is the number to which
 all other BASIC statements will refer. This number is from 1 to 255.
 There is normally a second number after the first called the device
 number (<device>). Device number 0 is the keyboard, 1 is the tape
 (default), 3 is the screen, 4 is the printer, 8 is usually the disk. A
 zero (0) may be included in front of the device number digit (e.g. 08
 for 8). Following the second number may be a third number called the
 secondary address (<address>). In the case of the tape, this can be 0
 for read, 1 for write, and 2 for write with end-of-tape marker at the
 end. In the case of the disk, the number refers to the channel number.
 In the printer, the secondary addresses are used to set the mode of the
 printer. There may also be a string following the third number, which
 could be a command to the disk drive or name of the file on tape or disk
 (<command>). The type (<type>) and mode (<mode>) refer to disk files
 only. (File types are prg, seq, rel, and usr; modes are read and write.)

 INPUTS
 <file> - logical file number for the file to be opened (1-255)
 <device> - input/output device number
 <address> - secondary address for device
 <command> - command for device
 <type> - file type (prg/seq/rel/usr)
 <mode> - I/O mode (read/write)

50

 RESULT
 Opens a logical file for I/O operations.

 EXAMPLES
 10 OPEN 3,3
 OPENs the screen as a device.

 10 OPEN 1,0
 OPENs the keyboard as a device.

 10 OPEN 1,1,0,"UP"
 OPENs the tape for reading, file to be searched for is named UP.

 OPEN 4,4
 OPENs a channel to use the printer.

 OPEN 15,8,15
 OPENs the command channel on the disk.

 5 OPEN 8,8,12,"TESTFILE,SEQ,WRITE"
 Creates a sequential disk file for writing.

 NOTES
 None

 BUGS
 None

 statement/PAINT statement/PAINT

 NAME
 PAINT -- Fills an area with color

 ABBREVIATION
 p <shift> A

 SYNOPSIS
 PAINT [<color_src>][,[<x>,<y>][,<mode>]]

 FUNCTION
 The PAINT command lets you fill an area with color. It fills in the area
 around the specified point until a boundary of the same color (or any
 non-background color, depending on which mode you have chosen) is
 encountered. The final position of the Pixel Cursor (PC) will be at the
 starting point (<x>,<y>).

 INPUTS
 <color_src> - fill color source (0-3); default is 1 (foreground color)
 <x> - scaled x coordinate (starting point)
 <y> - scaled y coordinate (starting point)
 <mode> - fill mode (0 = paint an area defined by the color source
 selected; 1 = paint an area defined by any non-background
 color source)

 RESULT
 Fills in the area around the specified point until a boundary of the
 same color (or any non-background color, depending on which mode you
 have chosen) is encountered.

 EXAMPLES
 10 CIRCLE,160,100,65,50
 20 PAINT,160,100
 Draws outline of circle and fills in the circle with color.

 NOTES
 If the starting point is already the color of color source you name (or
 any non-background when mode 1 is used), there is no change.

 BUGS
 None

 statement/POKE statement/POKE

 NAME
 POKE -- Writes a value into a RAM memory

51

 ABBREVIATION
 p <shift> O

 SYNOPSIS
 POKE <address>,<value>

 FUNCTION
 The POKE command allows you to change any value in the computer RAM
 memory, and lets you modify many of the computer input/output registers.
 POKE is always followed by two numbers (or equations). The first number
 (<address>) is a location inside your computer's memory. This could have
 any value from 0 to 65535. The second number (<value>) is a value from 0
 to 255, which is placed in the location, replacing any value that was
 there previously. This command can be used to control anything on the
 screen, from placing a character at that location to changing the color
 there.

 INPUTS
 <address> - memory address/location (0-65535)
 <value> - value to be stored in a given address (0-255)

 RESULT
 Given value is stored in a given memory location.

 EXAMPLES
 10 POKE 16000,8
 Sets location 16000 to 8.

 20 POKE 16*1000,27
 Sets location 16000 to 27.

 NOTES
 None

 BUGS
 None

 statement/PRINT statement/PRINT

 NAME
 PRINT -- Writes data to the screen

 ABBREVIATION
 ?

 SYNOPSIS
 PRINT <printlist>

 FUNCTION
 The PRINT statement is the major output statement in BASIC. While the
 PRINT statement is the first BASIC statement most people learn to use,
 there are many subtleties to be mastered here as well. The word PRINT
 can be followed by any combinations of these items, which is considered
 the printlist (<printlist>):

 Characters inside of quotes "text lines"
 Variable names A B A$ X$
 Functions SIN(23) ABS(33)
 Punctuation marks ; ,

 The characters inside of quotes are often called literals because they
 are printed exactly as they appear. Variable names have the value they
 contain (either a number or a string) printed. Functions also have
 their number values printed. Punctuation marks are used to help format
 the data neatly on the screen. The comma (,) devides the screen into
 four columns for data, while the semicolon (;) doesn't add any spaces.
 Either mark can be used as the last symbol in the statement. This
 results in the next PRINT statement acting as if it is continuing the
 last PRINT statement.

 INPUTS
 <printlist> - items to be printed

 RESULT
 Given printlist is displayed on the screen.

 EXAMPLES
 10 PRINT "HELLO"

52

 20 A$="THERE":PRINT "HELLO,"A$
 30 A=4:B=2:PRINT A+B
 50 J=41:PRINT J;:PRINT J-1
 60 C=A+B:D=A-B:PRINT A;B;C,D
 Result:
 HELLO
 HELLO, THERE
 6
 41 40
 4 2 6 2

 NOTES
 None

 BUGS
 None

 statement/PRINT statement/PRINT

 NAME
 PRINT USING -- Formats and writes data to the screen, file or device

 ABBREVIATION
 ?us <shift>I

 SYNOPSIS
 PRINT[<file>,]USING <formatlist>;<printlist>

 FUNCTION
 These statements let you define the format of string and numeric items
 you want to print to the screen, printer, or another device. Put the
 format you want in quotes. This is the format list (<formatlist>). Then
 add a semicolon (;) and a list of what you want printed in the format
 for the print list (<printlist>). The list can be variables or the
 actual values you want printed.

 +---------------------------+---------+--------+
 ! Character ! Numeric ! String !
 +---------------------------+---------+--------+
 ! Hash Sign (#) ! X ! X !
 ! Plus (+) ! X ! - !
 ! Minus (-) ! X ! - !
 ! Decimal Point (.) ! X ! - !
 ! Comma (,) ! X ! - !
 ! Dollar Sign ($) ! X ! - !
 ! Four Carets (^^^^) ! X ! - !
 ! Equal Sign (=) ! - ! X !
 ! Greather Than Sign (>) ! - ! X !
 +---------------------------+---------+--------+

 The hash sign (#) reserves room for a single character in the output
 field. If the data item contains more characters than you have # in your
 format field, PRINT USING prints nothing. For a numeric item, the entire
 field is filled with asterisks (*). No numbers are printed.
 For a STRING item, the string data is truncated at the bounds of the
 field. Only as many characters are printed as there are hash signs (#)
 in the format item. Truncation occurs on the right.
 The plus (+) and minus (-) signs can be used in either the first or last
 position of a format field but not both. The plus sign is printed if
 the number is positive. The minus sign is printed if the number is
 negative.
 If you use minus sign and the number is positive, a blank is printed in
 the character position indicated by the minus sign.
 If you don't use either a plus or minus sign in your format field for a
 numeric data item, a minus sign is printed before the first digit or
 dollar symbol if the number is negative and no sign is printed if the
 number is positive. This means that you can print one character more if
 the number is positive. If there are too many digits to fit into the
 field specified by the # and + or - signs, then an overflow occurs and
 the field is filled with asterisks (*).
 A decimal point (.) symbol designates the position of the decimal point
 in the number. You can only have one decimal point in any format field.
 If you don't specify a decimal point in your format field, the value is
 rounded to the nearest integer and printed without any decimal places.
 When you specify a decimal point, the number of digits preceding the
 decimal point (including the minus sign, if the value is negative) must
 not exceed the number of # before the decimal point. If there are too
 many digits an overflow occurs and the field is filled with asterisks

53

 (*).
 A comma (,) lets you place commas in numeric fields. The position of the
 comma in the format list indicates where the comma appears in a printed
 number. Only commas within a number are printed. Unused commas to the
 left of the first digit appear as the filler character. At least one #
 must precede the first comma in a field.
 If you specify commas in a field and the number is negative, then a
 minus sign is printed as the first character even if the character
 position is specified as a comma.
 A dollar sign ($) symbol shows that a dollar sign will be printed in the
 number. If you want the dollar sign to float (always be placed before
 the number), you must specify at least one # before the dollar sign. If
 you specify a dollar sign without a leading #, the dollar sign is
 printed in the position shown in the format field.
 If you specify commas and/or a plus or minus sign in a format field with
 a dollar sign, your program prints a comma or sign before the dollar
 sign.
 The four up arrows or carets (^^^^) symbol is used to specify that the
 number is to be printed in E+ format. You must use # in addition to the
 ^^^^ to specify the field width. The ^^^^ must appear after the # in the
 format field.
 You must specify four carets (^^^^) when you want to print a number in
 E-format (scientific notation). If you specify more than one but fewer
 than four carets, you get a syntax error. If you specify more than four
 carets only the first four are used. The fifth caret (and subsequent
 carets) are interpreted literally as no text symbols.
 An equal sign (=) is used to centre a string in the field. You specify
 the field width by the number of characters (# and =) in the format
 field. If the string contains fewer characters than the field width, the
 string is centered in the field. The right-most characters are truncated
 and the string fills the entire field.
 A greater than sign (>) is used to right justify a string in a field.
 You specify the field width by the number of characters (# and =) in the
 format field. If the string contains fewer characters than the field
 width, the string is right justified in the field. If the string
 contains more characters than can be fit into the field, the right-most
 characters are truncated and the string fills the entire field.

 INPUTS
 <file> - logical number of target file/device
 <formatlist> - printlist is formatted by using these format instructions
 <printlist> - items to be printed

 RESULT
 Given printlist is formatted and displayed on the screen or written into
 a file or device.

 EXAMPLES
 5 X=32:Y=100.23:A$="CAT"
 10 PRINT USING "$##.##";13.25,X,Y
 20 PRINT USING "###>#";"CBM",A$
 When you RUN this, line 10 prints out:

 $13.25$32.00$*****

 PRINT USING prints ***** instead of Y value because Y has 5 digits,
 which does not conform to format list.
 Line 20 prints this:

 CBM CAT

 PRINT USING leaves three spaces before printing "CBM" as defined in
 format list.

 10 PRINT USING "####";X
 For these values for X, this format displays:

 A = 12.34 12
 A = 567.89 568
 A = 123456 ****

 10 PRINT USING "##.#+";-.01
 Result:

 0.01-

 Leading zero added.

 10 PRINT USING "##.#-";1
 Result:

54

 1.0

 Trailing zero added.

 10 PRINT USING "####";-100.5
 Result:

 -101

 Rounded to no decimal places.

 10 PRINT USING "####";-1000
 Result:

 Overflow because four digits and minus sign cannot fit in field.

 10 PRINT USING "###.";10
 Result:

 10.

 Decimal point added.

 10 PRINT USING "#$##";1
 Result:

 $1

 Leading $ sign.

 NOTES
 None

 BUGS
 None

 statement/PRINT# statement/PRINT#

 NAME
 PRINT# -- Writes data to a file or a device

 ABBREVIATION
 p <shift> R

 SYNOPSIS
 PRINT#<file>,<printlist>

 FUNCTION
 There are a few differences between this statement and the PRINT. First
 of all, the word PRINT# is followed by a number, which refers to the
 device or data file previously OPENed. The number is followed by a
 comma, and a list of things to be PRINTed. The semicolon acts in the
 same manner for spacing as it does in the PRINT statement. The comma
 will send 10 spaces to most printers and can be used as a separator for
 disk files.

 INPUTS
 <file> - logical number of target file/device
 <printlist> - items to be printed

 RESULT
 Writes given data (<printlist>) to the target file/device.

 EXAMPLES
 100 PRINT#1,"HELLO THERE!",A$,B$,

 NOTES
 Some devices may not work with TAB and SPC.

 BUGS
 None

 statement/PUDEF statement/PUDEF

55

 NAME
 PUDEF -- Redefines PRINT USING symbols

 ABBREVIATION
 p <shift> U

 SYNOPSIS
 PUDEF "<definition>"

 FUNCTION
 PUDEF lets you redefine up to 4 symbols in the PRINT USING statement.
 You can change blanks, commas, decimals points, and dollar signs into
 some other character by placing the new character in the correct
 position in the PUDEF control string.
 Position 1 is the filler character. The default is a blank. Place a new
 character here when you want another chacter to appear in place of
 blanks.
 Position 2 is the comma character. Default is a comma.
 Position 3 is the decimal point.
 Position 4 is the dollar sign.

 INPUTS
 <definition> - definition string for symbols (from left to right):
 the first character defines a filler character,
 the second character defines a comma,
 the third character defines a decimal point, and
 the fourth character defines a dollar sign

 RESULT
 Redefines four PRINT USIGN symbols: a filler character, a comma, a
 decimal point, and a dollar sign.

 EXAMPLES
 10 PUDEF "*"
 Prints * in the place of blanks.

 20 PUDEF " &"
 Prints & in the place of commas.

 30 PUDEF " .,"
 Prints decimal points in the place of commas, and commas in the
 place of decimal points.

 40 PUDEF " .,£"
 Prints English pound sign in the place of $, decimal points in the
 place of commas, and commas in place of decimal points.

 NOTES
 None

 BUGS
 None

 statement/READ statement/READ

 NAME
 READ -- Get information from DATA statements

 ABBREVIATION
 r <shift> E

 SYNOPSIS
 READ <variable>[,<...>,<variable>]

 FUNCTION
 This statement is used to get information from DATA statements into
 variables, where the data can be used. The READ statement variable list
 may contain both strings and numbers. Care must be taken to avoid
 reading strings where the READ statement expects a number, which
 produces an ERROR message.

 INPUTS
 <variable> - read data will be stored in this variable

 RESULT
 Data read from the DATA statements is stored in the target variables
 (<variable>).

56

 EXAMPLES
 10 READ A$,G$,Y

 NOTES
 None

 BUGS
 None

 statement/REM statement/REM

 NAME
 REM -- Attaches a note to the source code

 ABBREVIATION
 None

 SYNOPSIS
 REM [<message>]

 FUNCTION
 The REMark is just a note to whoever is reading a LIST of the program.
 It may explain a section of the program, give information about the
 author, etc. REM statements in no way effect the operation of the
 program, except to add to its length (and therefore slow it down). The
 word REM may be followed by any text, although use of graphic characters
 gives strange results.

 INPUTS
 <message> - any text

 RESULT
 Attach a note to the source code so it can be read from the program
 listing.

 EXAMPLES
 10 NEXT X:REM THIS LINE IS UNNECESSARY

 NOTES
 None

 BUGS
 None

 statement/RESTORE statement/RESTORE

 NAME
 RESTORE -- Sets a DATA pointer

 ABBREVIATION
 re <shift> S

 SYNOPSIS
 RESTORE [<line>]

 FUNCTION
 When executed in a program, the pointer to the item in a DATA statement
 which is to be read next is reset to the first item in the list. This
 gives you the ability to re-READ the information. If a line number
 (<line>) follows the RESTORE statement, the pointer is set to that line.
 Otherwise the pointer is reset to the first DATA statement in the
 program.

 INPUTS
 <line> - a BASIC line number where DATA pointer should be set

 RESULT
 Sets DATA pointer to the first item in a DATA item list or to the given
 BASIC line number which contains a DATA statement.

 EXAMPLES
 10 RESTORE 200

 NOTES
 None

57

 BUGS
 None

 statement/RESUME statement/RESUME

 NAME
 RESUME -- Continues program execution after an error

 ABBREVIATION
 res <shift> U

 SYNOPSIS
 RESUME [<line>|NEXT]

 FUNCTION
 Used to return to execution after TRAPing an error. With no arguments,
 RESUME attempts to re-execute the line in which the error occured.
 RESUME NEXT resumes execution at the next statement following the
 statement containing the error; RESUME <line> will GOTO the specific
 line and begin execution there.

 INPUTS
 <line> - a BASIC line number where program execution should continue
 NEXT - resume execution at the next statement

 RESULT
 Resumes execution after an error at the line where the error occured, or
 at the next BASIC line, or at a given BASIC line.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 statement/RETURN statement/RETURN

 NAME
 RETURN -- Returns from a subroutine

 ABBREVIATION
 re <shift> T

 SYNOPSIS
 RETURN

 FUNCTION
 This statement is always used with the GOSUB statement. When the program
 encounters a RETURN statement, it goes to the statement immediately
 following the last GOSUB command executed. If no GOSUB was previously
 issued, then a RETURN WITHOUT GOSUB ERROR message is delivered, and
 program execution is stopped.

 INPUTS
 None

 RESULT
 Returns from a subroutine to the statement following the last
 subroutine call (GOSUB statement).

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 statement/SCALE statement/SCALE

58

 NAME
 SCALE -- Controls bit maps scaling

 ABBREVIATION
 sc <shift> A

 SYNOPSIS
 SCALE <scaling_flag>

 FUNCTION
 The scaling of the bit maps in multicolor and high resolution modes can
 be changed with the SCALE command. Entering:
 SCALE 1
 turns scaling on. Coordinates may then be scaled from 0 to 1023 in
 both x and y rather than the normal scale values, which are:

 multicolor mode............ x = 0 to 159, y = 0 to 199
 high resolution mode....... x = 0 to 319, y = 0 to 199

 SCALE 0
 turns scaling off.

 INPUTS
 <scaling_flag> - scaling mode: 0=no scaling, 1=scale

 RESULT
 Turns scaling on or off.

 EXAMPLES
 SCALE 1

 NOTES
 None

 BUGS
 None

 None

 statement/SCNCLR statement/SCNCLR

 NAME
 SCNCLR -- Clears the screen

 ABBREVIATION
 s <shift> C

 SYNOPSIS
 SCNCLR

 FUNCTION
 Clears the current screen, whether graphics, text, or both (split
 screen).

 INPUTS
 None

 RESULT
 Clears the current screen.

 EXAMPLES
 SCNCLR

 NOTES
 None

 BUGS
 None

 statement/SOUND statement/SOUND

 NAME
 SOUND -- Produces a sound

 ABBREVIATION
 s <shift> O

59

 SYNOPSIS
 SOUND <voice>,<frq_control>,<duration>

 FUNCTION
 This statement produces a SOUND using one of the three voices (<voice>)
 with a frequency control (<frq_control>) in the range of 0-1023 for a
 duration (<duration>) of 0-65535 60ths of a second.
 The Commodore 16 have 2 independent sound channels and ability to
 produce square and white noise timbres as follows:

 Voice Sound channel Wave shape

 1 1 square
 2 2 square
 3 2 noise

 If a SOUND for voice n is requested, and the previous SOUND for the same
 n is still playing, BASIC waits for the previous SOUND to complete.
 SOUND with a duration of 0 is a special case. It causes BASIC to turn
 off the current SOUND for that voice immediately, regardless of the time
 remaining on the previous SOUND.

 INPUTS
 <voice> - voice number (1-3)
 <frq_control> - sound register value (0-1023)
 <duration> - duration of a sound in 60ths of a second (0-65535)

 RESULT
 Cuts off or produces a sound with square or white noise timbre.

 EXAMPLES
 SOUND 2,800,3600
 Plays a note using voice 2 with frequency set at 800 for one minute.

 NOTES
 The sound register value (<frq_control>) does not correspond directly to
 the real sound frequence. If you want to produce a sound with a certain
 frequency use the following formulas to find the sound register value
 for the desired frequency:

 formula for computers using PAL television standard
 SOUND REGISTER VALUE = 1024-(111840.45/FREQUENCY)

 formula for computers using NTSC television standard
 SOUND REGISTER VALUE = 1024-(111860.781/FREQUENCY)

 BUGS
 None

 statement/SSHAPE statement/SSHAPE

 NAME
 SSHAPE -- Saves a rectangular graphic area into a string variable

 ABBREVIATION
 s <shift> S

 SYNOPSIS
 SSHAPE <shape>,<left>,<top>[,<right>,<bottom>]

 FUNCTION
 This statement is used to save a rectangular area of multicolor or high
 resolution screen using BASIC string variable.
 Because BASIC limits string lengths to 255 characters, the size of the
 area you may save is limited. The string size required can be calculated
 using one of the following (unscaled) formulas:

 L(mcm) = INT((ABS(<left>-<right>)+1)/4+.99)*(ABS(<top>-<bottom>)+1)+
 L(h-r) = INT((ABS(<left>-<right>)+1)/8+.99)*(ABS(<top>-<bottom>)+1)+

 (mcm) refers to multi-color mode; (h-r) is high resolution mode.

 The shape is saved row by row. The last four bytes of the string contain
 the column and row lengths less one (i.e.: ABS(<left>-<right>)) in
 low/high byte format (if scaled divide the lengths by 3.2 (X) and 5.12
 (Y)).

60

 INPUTS
 <shape> - string variable where shape sould be stored
 <left> - scaled corner coordinate
 <top> - scaled corner coordinate
 <right> - scaled corner coordinate
 <bottom> - scaled corner coordinate

 RESULT
 Saves a defined rectangular graphic area into a BASIC string variable.

 EXAMPLES
 SSHAPE V$,0,0
 Saves screen area from the upper left corner to where the cursor is
 positioned under the name V$.

 NOTES
 None

 BUGS
 None

 statement/STOP statement/STOP

 NAME
 STOP -- Halts the program execution

 ABBREVIATION
 s <shift> T

 SYNOPSIS
 STOP

 FUNCTION
 This statement halts the program. A message, BREAK IN LINE <line>, where
 the <line> is the line number containing the STOP. The program can be
 re-started at the statement following STOP if you use the CONT command.
 The STOP statement is usually used while debugging a program.

 INPUTS
 None

 RESULT
 Halts the program execution.

 EXAMPLES
 100 STOP

 NOTES
 None

 BUGS
 None

 statement/SYS statement/SYS

 NAME
 SYS -- Executes a machine language program

 ABBREVIATION
 s <shift> Y

 SYNOPSIS
 SYS <address>

 FUNCTION
 The word SYS is followed by a decimal number or numeric variable in the
 range 0 to 65535. The program begins executing the machine language
 program starting at that memory location. (This is similar to the USR
 function, but does not pass a parameter.) However, parameters can be passed
 anyway using the following memory locations:

2034 = Accumulator
2035 = X register
2036 = Y register

These can be used both before SYS to set the processor registers (for example POKE

61

2034,255) and after the return from the machine language routine to check the results
(for example A=PEEK(2034))

(For further communication, you can of course also poke and peek to memory locations
that you design your ML routine to use.)

 INPUTS
 <address> - memory address (0-65535)

 RESULT
 Begins executing a machine language program from the given memory
 location.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 statement/TRAP statement/TRAP

 NAME
 TRAP -- Turns on or off error interception

 ABBREVIATION
 t <shift> R

 SYNOPSIS
 TRAP [<line>]

 FUNCTION
 When turned on, TRAP intercepts all error conditions (including the
 <run/stop> key) exept "UNDEF'D STATEMENT ERROR". In the event of any
 execution error, the error flag is set, and execution is transferred to
 the line number named in the TRAP statement (<line>). The line number in
 which the error occured can be found by using the system variable EL.
 The string function ERR$(ER) gives the error message corresponding to
 any error condition ER.
 TRAP with no line number argument turns off error TRAPping.

 INPUTS
 <line> - BASIC line number where program execution should continue when
 an error occures

 RESULT
 When line number has been given turns on error interception, otherwise
 turns it off.

 EXAMPLES
 200 TRAP 210
 210 PRINT "AN ERROR OCCURED IN LINE"EL".":STOP

 NOTES
 An error in a TRAP routine cannot be trapped. The RESUME statement can
 be used to resume execution.

 BUGS
 None

 statement/TROFF statement/TROFF

 NAME
 TROFF -- Turns trace mode off

 ABBREVIATION
 tro <shift> F

 SYNOPSIS
 TROFF

 FUNCTION
 This statement turns trace mode off.

62

 INPUTS
 None

 RESULT
 Exits trace mode.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 statement/TRON statement/TRON

 NAME
 TRON -- Turns trace mode on

 ABBREVIATION
 tr <shift> O

 SYNOPSIS
 TRON

 FUNCTION
 TRON is used in program debugging. This statement begins trace mode.
 When you are in trace mode, as each statement executes, the line number
 of that statement is printed.

 INPUTS
 None

 RESULT
 Begins the trace mode.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 statement/VOL statement/VOL

 NAME
 VOL -- Sets sound volume level

 ABBREVIATION
 v <shift> O

 SYNOPSIS
 VOL <volume>

 FUNCTION
 Sets the current VOLume level for SOUND commands. VOLume may be set from
 0 to, where 8 is maximum volume, and 0 is off. VOL affects all channels.

 INPUTS
 <volume> - sound volume (0-8)

 RESULT
 Sets sound volume level.

 EXAMPLES
 10 VOL 8
 Sets sound volume level to the maximum.

 NOTES
 None

 BUGS

63

 None

 statement/WAIT statement/WAIT

 NAME
 WAIT -- Waits for a change of memory address

 ABBREVIATION
 w <shift> A

 SYNOPSIS
 WAIT <address>,<ctrl_value1>[,<ctrl_value2>]

 FUNCTION
 The WAIT statement is used to halt the program until the contents of a
 location in memory changes in a specific way. The address (<address>)
 must be in the range from 0 to 65535. Value 1 (<ctrl_value1>) and value
 2 (<ctrl_value2>) must be in the range from 0 to 255.
 The content of the memory location is first exclusive-ORed (XOR) with
 value 2 (if present), and then logically ANDed (AND) with value 1. If
 the result is zero, the program checks the memory location again. When
 the result is not zero, the program continues with the next statement.

 INPUTS
 <address> - memory location to be monitored (0-65535)
 <ctrl_value1> - first control value (0-255)
 <ctrl_value2> - second control value (0-255)

 RESULT
 Halts program execution until the contents of a given memory address
 changes.

 EXAMPLES
 None

 NOTES
 None

 BUGS
 None

 VARIABLES

 Your computer uses three types of variables in BASIC. These are: normal
 numeric, integer numeric, and string (alphanumeric) variables.

 NUMERIC VARIABLES

 Normal numeric variables, also called floating point variables, can have
 any value from ^ -38 to ^ +38, with up to nine digits of accuracy. When
 a number becomes larger than nine digits can show, as in 10 ^ -10 or
 10 ^ +10, your computer displays it in scientific notation form, with
 the number normalized to 1 digit and eight decimal places, followed by
 the letter E and the power of ten by which the number is multiplied. For
 example, the number 12345678901 is displayed as 1.23456789E+10.

 INTEGER VARIABLES

 Integer variables can be used when the number is from +32767 to -32768,
 and with no fractional portion. An integer variable is a number like 5,
 10, or -100. Integers take up less space than floating point variables
 when used in an array.

 STRING VARIABLES

 String variables are those used for character data, which may contain
 numbers, letters, and any other character that your computer can make.
 An example of a string variable is "COMMODORE 16".

 VARIABLE NAMES

64

 Variable names may consist of a single letter, a letter followed by a
 number, or two letters. Variable names may be longer than 2 characters,
 but only the first two are significant.
 An integer variable is specified by using the percent (%) sign after the
 variable name. String variables have the dollar sign ($) after their
 names.

 Examples:

 Numeric Variable Names: A, A5, BZ
 Integer Variable Names: A%, A5%, BZ%
 String Variable Names : A$, A5$,BZ$

 ARRAYS

 Arrays are lists of variables with the same name, using an extra number
 (or numbers) to specify an element of the array. Arrays are defined
 using the DIM statement, and may be floating point, integer, or string
 variables arrays. The array variable name is followed by a set of
 parentheses () enclosing the number of the variable in the list.

 Examples:

 A(7), BZ%(11), A$(87)

 Arrays may have more than one dimension. A two dimensional array may be
 viewed as having rows and columns, with the first number identifying the
 column and the second number in the parentheses identifying the row (as
 if specifying a certain grid on a map).

 Examples:

 A(7,2), BZ%(2,3,4), A$(3,2)

 RESERVED VARIABLE NAMES

 There are seven variable names which are reserved for use by the
 computer, and may not be used for another purpose. These are the
 variables:

 variable/DS variable/DS

 NAME
 DS -- Disk drive's status

 DESCRIPTION
 The variable DS reads the disk drive command channel, and returns the
 current status of the drive.
 DS is used after a disk operation (like DLOAD or DSAVE) to find out why
 the red error light on the disk drive is blinking.

 EXAMPLES
 None

 NOTES
 None

 variable/DS$ variable/DS$

 NAME
 DS$ -- Disk drive's status in words

 DESCRIPTION
 The variable DS$ reads the disk drive command channel, and returns the
 current status of the drive in words.
 DS$ is used after a disk operation (like DLOAD or DSAVE) to find out why
 the red error light on the disk drive is blinking.

 EXAMPLES
 None

 NOTES

65

 None

 variable/EL variable/EL

 NAME
 EL -- Last error line

 DESCRIPTION
 The variable EL is used typically in error trapping routines. EL stores
 the line number where last error occured.

 EXAMPLES
 None

 NOTES
 None

 variable/ER variable/ER

 NAME
 ER -- Last error line

 DESCRIPTION
 The variable ER is used typically in error trapping routines. ER stores
 the last error (error condition number) encountered since the program
 was run.

 EXAMPLES
 None

 NOTES
 None

 variable/ST variable/ST

 NAME
 ST -- Input/output status

 DESCRIPTION
 ST is a status variable for input and output (exept normal
 screen/keyboard operations). The value of ST depends on the results of
 the last input/output operation.

 EXAMPLES
 None

 NOTES
 None

 None

 variable/TI variable/TI

 NAME
 TI -- Clock value

 DESCRIPTION
 TI variable contains the current value of the clock in 1/60ths of a
 second.

 EXAMPLES
 None

 NOTES
 None

 variable/TI$ variable/TI$

 NAME
 TI$ -- Current time

66

 DESCRIPTION
 TI$ is a string that reads the value of the real-time clock as a 24 hour
 clock. The first two characters of TI$ contain the hour, the 3rd and 4th
 characters are the minutes, and the 5th and 6th characters are the
 seconds. This variable can be set to any value (so long as all
 characters are numbers), and will be automatically updated as a 24 hour
 clock.
 The value of the clock is lost when computer is turned off. It starts at
 zero when computer is turned on, and is reset to zero when the value of
 the clock exeeds 235959 (23 hours, 59 minutes and 59 seconds).

 EXAMPLES
 TI$ = "101530"
 Sets the clock to 10:15 and 30 seconds (AM).

 NOTES
 None

 BASIC ERROR MESSAGES

 These error messages are printed by BASIC. You can also PRINT the
 messages through the use of the ERR$ function. The error number refers
 only to the number assigned to the error for use with this function.

 basic_error/01_TOO_MANY_FILES basic_error/01_TOO_MANY_FILES

 NUMBER
 1

 MESSAGE
 TOO MANY FILES

 DESCRIPTION
 There is a limit of 10 files OPEN at one time.

 basic_error/02_FILE_OPEN basic_error/02_FILE_OPEN

 NUMBER
 2

 MESSAGE
 FILE OPEN

 DESCRIPTION
 An attempt was made to open a file using the number of an already open
 file.

 basic_error/03_FILE_NOT_OPEN basic_error/03_FILE_NOT_OPEN

 NUMBER
 3

 MESSAGE
 FILE NOT OPEN

 DESCRIPTION
 The file number specified in an I/O statement must be opened before use.

 basic_error/04_FILE_NOT_FOUND basic_error/04_FILE_NOT_FOUND

 NUMBER
 4

 MESSAGE
 FILE NOT FOUND

 DESCRIPTION
 No file with that name exists (disk).

 basic_error/05_DEVICE_NOT_PRESENT basic_error/05_DEVICE_NOT_PRESENT

 NUMBER

67

 5

 MESSAGE
 DEVICE NOT PRESENT

 DESCRIPTION
 The required I/O device not available.

 basic_error/06_NOT_INPUT_FILE basic_error/06_NOT_INPUT_FILE

 NUMBER
 6

 MESSAGE
 NOT INPUT FILE

 DESCRIPTION
 An attempt made to GET or INPUT data from a file that was specified as
 output only.

 basic_error/07_NOT_OUTPUT_FILE basic_error/07_NOT_OUTPUT_FILE

 NUMBER
 7

 MESSAGE
 NOT OUTPUT FILE

 DESCRIPTION
 An attempt made to send data to a file that was specified as input only.

 basic_error/08_MISSING_FILE_NAME basic_error/08_MISSING_FILE_NAME

 NUMBER
 8

 MESSAGE
 MISSING FILE NAME

 DESCRIPTION
 An OPEN, LOAD, or SAVE to the disk generally requires a file name.

 basic_error/09_ILLEGAL_DEVICE_NUMBER basic_error/09_ILLEGAL_DEVICE_NUMBER

 NUMBER
 9

 MESSAGE
 ILLEGAL DEVICE NUMBER

 DESCRIPTION
 An attempt made to use a device improperly (SAVE to the screen, etc.).

 basic_error/10_NEXT_WITHOUT_FOR basic_error/10_NEXT_WITHOUT_FOR

 NUMBER
 10

 MESSAGE
 NEXT WITHOUT FOR

 DESCRIPTION
 Either loops are nested incorrectly, or there is a variable name in a
 NEXT statement that does not correspond with one in a FOR.

 basic_error/11_SYNTAX_ERROR basic_error/11_SYNTAX_ERROR

 NUMBER
 11

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 A statement is unrecognizable by BASIC. This could be because of missing
 or extra parenthesis, misspelled keyword, etc.

 basic_error/12_RETURN_WITHOUT_GOSUB basic_error/12_RETURN_WITHOUT_GOSUB

 NUMBER

68

 12

 MESSAGE
 RETURN WITHOUT GOSUB

 DESCRIPTION
 A RETURN statement encountered when no GOSUB statement was active.

 basic_error/13_OUT_OF_DATA basic_error/13_OUT_OF_DATA

 NUMBER
 13

 MESSAGE
 OUT OF DATA

 DESCRIPTION
 A READ statement encountered, without data left unREAD.

 basic_error/14_ILLEGAL_QUANTITY basic_error/14_ILLEGAL_QUANTITY

 NUMBER
 14

 MESSAGE
 ILLEGAL QUANTITY

 DESCRIPTION
 A number used as the argument of a function or statement is outside the
 allowable range.

 basic_error/15_OVERFLOW basic_error/15_OVERFLOW

 NUMBER
 15

 MESSAGE
 15 OVERFLOW

 DESCRIPTION
 The result of a computation is larger than the largest number allowed
 (1.701411833E+38).

 basic_error/16_OUT_OF_MEMORY basic_error/16_OUT_OF_MEMORY

 NUMBER
 16

 MESSAGE
 OUT OF MEMORY

 DESCRIPTION
 Either there is no more room for program and program variables, or there
 are too many DO, FOR, or GOSUB statements in effect.

 basic_error/17_UNDEF'D_STATEMENT basic_error/17_UNDEF'D_STATEMENT

 NUMBER
 17

 MESSAGE
 UNDEF'D STATEMENT

 DESCRIPTION
 A line number referenced does not exist in the program.

 basic_error/18_BAD_SUBSCRIPT basic_error/18_BAD_SUBSCRIPT

 NUMBER
 18

 MESSAGE
 BAD SUBSCRIPT

 DESCRIPTION
 The program tried to reference an element of an array out of the range
 specified by the DIM statement.

 basic_error/19_REDIM'D_ARRAY basic_error/19_REDIM'D_ARRAY

69

 NUMBER
 19

 MESSAGE
 REDIM'D ARRAY

 DESCRIPTION
 An array can only be DIMensioned once. If an array is referenced before
 that array is DIM'd, an automatic DIM (to 10) is performed.

 basic_error/20_DIVISION_BY_ZERO basic_error/20_DIVISION_BY_ZERO

 NUMBER
 20

 MESSAGE
 DIVISION BY ZERO

 DESCRIPTION
 Division by zero is not allowed.

 basic_error/21_ILLEGAL_DIRECT basic_error/21_ILLEGAL_DIRECT

 NUMBER
 21

 MESSAGE
 ILLEGAL DIRECT

 DESCRIPTION
 INPUT or GET statements are only allowed within a program.

 basic_error/22_TYPE_MISMATCH basic_error/22_TYPE_MISMATCH

 NUMBER
 22

 MESSAGE
 TYPE MISMATCH

 DESCRIPTION
 This occurs when a number is used in place of a string or vice-versa.

 basic_error/23_STRING_TOO_LONG basic_error/23_STRING_TOO_LONG

 NUMBER
 23

 MESSAGE
 STRING TOO LONG

 DESCRIPTION
 A string can contain up to 255 characters.

 basic_error/24_FILE_DATA basic_error/24_FILE_DATA

 NUMBER
 24

 MESSAGE
 FILE DATA

 DESCRIPTION
 Bad data read from a tape.

 basic_error/25_FORMULA_TOO_COMPLEX basic_error/25_FORMULA_TOO_COMPLEX

 NUMBER
 25

 MESSAGE
 FORMULA TOO COMPLEX

 DESCRIPTION
 Simplify the expression (break into two parts or use fewer parentheses).

 basic_error/26_CAN'T_CONTINUE basic_error/26_CAN'T_CONTINUE

 NUMBER
 26

70

 MESSAGE
 CAN'T CONTINUE

 DESCRIPTION
 The CONT command does not work if the program was not RUN, there was an
 error, or a line has been edited.

 basic_error/27_UNDEF'D_FUNCTION basic_error/27_UNDEF'D_FUNCTION

 NUMBER
 27

 MESSAGE
 UNDEF'D FUNCTION

 DESCRIPTION
 A user defined function referenced that was never defined.

 basic_error/28_VERIFY basic_error/28_VERIFY

 NUMBER
 28

 MESSAGE
 VERIFY

 DESCRIPTION
 The program on tape or disk does not match the program in memory.

 basic_error/29_LOAD basic_error/29_LOAD

 NUMBER
 29

 MESSAGE
 LOAD

 DESCRIPTION
 There was a problem loading. Try again.

 basic_error/30_BREAK basic_error/30_BREAK

 NUMBER
 30

 MESSAGE
 BREAK

 DESCRIPTION
 The stop key was hit to halt program execution.

 basic_error/31_CAN'T_RESUME basic_error/31_CAN'T_RESUME

 NUMBER
 31

 MESSAGE
 CAN'T RESUME

 DESCRIPTION
 A RESUME statement encountered without TRAP statement in effect.

 basic_error/32_LOOP_NOT_FOUND basic_error/32_LOOP_NOT_FOUND

 NUMBER
 32

 MESSAGE
 LOOP NOT FOUND

 DESCRIPTION
 The program has encountered a DO statement and cannot find the
 corresponding LOOP.

 basic_error/33_LOOP_WITHOUT_DO basic_error/33_LOOP_WITHOUT_DO

 NUMBER
 33

71

 MESSAGE
 LOOP WITHOUT DO

 DESCRIPTION
 LOOP encountered without a DO statement active.

 basic_error/34_DIRECT_MODE_ONLY basic_error/34_DIRECT_MODE_ONLY

 NUMBER
 34

 MESSAGE
 DIRECT MODE ONLY

 DESCRIPTION
 This command is allowed only in direct mode, not from a program.

 basic_error/35_NO_GRAPHICS_AREA basic_error/35_NO_GRAPHICS_AREA

 NUMBER
 35

 MESSAGE
 NO GRAPHICS AREA

 DESCRIPTION
 A command (DRAW, BOX, etc.) to create graphics encountered before the
 GRAPHIC command was executed.

 basic_error/36_BAD_DISK basic_error/36_BAD_DISK

 NUMBER
 36

 MESSAGE
 BAD DISK

 DESCRIPTION
 An attempt failed to HEADER a disk, because the quick header method
 (no ID) was attempted on an unformatted disk, or the disk is bad.

 DISK ERROR MESSAGES

 NOTES

 Error message numbers 02-19, 35-38, 40-49, 53-59, and 68-69 should be
 ignored. Message number 01 (<deleted>) gives information about the
 number of files deleted with the SCRATCH command.

 disk_error/20_READ_ERROR disk_error/20_READ_ERROR

 NUMBER
 20

 MESSAGE
 READ ERROR

 DESCRIPTION
 Block header not found.

 The disk controller is unable to locate the header of the requested data
 block. Caused by an illegal sector number, or the header has been
 destroyed.

 disk_error/21_READ_ERROR disk_error/21_READ_ERROR

 NUMBER
 21

 MESSAGE
 READ ERROR

 DESCRIPTION
 No sync character.

72

 The disk controller is unable to detect a sync mark on the desired
 track. Caused by misalignment of the read/write head, no disk is
 present, or unformatted or improperly seated disk. Can also indicate a
 hardware failure.

 disk_error/22_READ_ERROR disk_error/22_READ_ERROR

 NUMBER
 22

 MESSAGE
 READ ERROR

 DESCRIPTION
 Data block not present.

 The disk controller has been requested to read or verify a data block
 that was not properly written. This error message occurs in conjunction
 with the BLOCK commands and indicates an illegal track and/or sector
 request.

 disk_error/23_READ_ERROR disk_error/23_READ_ERROR

 NUMBER
 23

 MESSAGE
 READ ERROR

 DESCRIPTION
 Checksum error in data block.

 This error message indicates that there is an error in one or more of
 the data types. The data has been read into the DOS memory, but the
 checksum over the data is in error. This message may also indicate
 grounding problems.

 disk_error/24_READ_ERROR disk_error/24_READ_ERROR

 NUMBER
 24

 MESSAGE
 READ ERROR

 DESCRIPTION
 Byte decoding error.

 The data or header has been read into the DOS memory, but a hardware
 error has been created due to an invalid bit pattern in the data byte.
 This message may also indicate grounding problems.

 disk_error/25_WRITE_ERROR disk_error/25_WRITE_ERROR

 NUMBER
 25

 MESSAGE
 WRITE ERROR

 DESCRIPTION
 Write-verify error.

 This message is generated if the controller detects a mismatch between
 the written data and the data in the DOS memory.

 disk_error/26_WRITE_PROTECT_ON disk_error/26_WRITE_PROTECT_ON

 NUMBER
 26

 MESSAGE
 WRITE PROTECT ON

 DESCRIPTION
 This message is generated when the controller has been requested to
 write a data block while the write protect switch is depressed.
 Typically, this is caused by using a disk with a write protect tab over
 the notch.

73

 disk_error/27_READ_ERROR disk_error/27_READ_ERROR

 NUMBER
 27

 MESSAGE
 READ ERROR

 DESCRIPTION
 Checksum error in header.

 The controller has detected an error in the header of the requested data
 block. The block has not been read into the DOS memory. This message may
 also indicate grounding problems.

 disk_error/28_WRITE_ERROR disk_error/28_WRITE_ERROR

 NUMBER
 28

 MESSAGE
 WRITE ERROR

 DESCRIPTION
 Too long data block.

 The controller attempts to detect the sync mark of the next header after
 writing a data block. If the sync mark does not appear within a
 pre-determined time, the error message is generated. The error is caused
 by a bad disk format (the data extends into the next block), or by
 hardware failure.

 disk_error/29_DISK_ID_MISMATCH disk_error/29_DISK_ID_MISMATCH

 NUMBER
 29

 MESSAGE
 DISK ID MISMATCH

 DESCRIPTION
 This message is generated when the controller has been requested to
 access a disk which has not been initialized. The message can also occur
 if a disk has a bad header.

 disk_error/30_SYNTAX_ERROR disk_error/30_SYNTAX_ERROR

 NUMBER
 30

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 Error in general syntax.

 The DOS cannot interpret the command sent to the command channel.
 Typically, this is caused by an illegal number of file names, or
 patterns are illegally used. For example, two file names may appear on
 the left side of the COPY command.

 disk_error/31_SYNTAX_ERROR disk_error/31_SYNTAX_ERROR

 NUMBER
 31

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 Invalid command.

 The DOS does not recognize the command. The command must start in the
 first position.

 disk_error/32_SYNTAX_ERROR disk_error/32_SYNTAX_ERROR

 NUMBER
 32

74

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 Invalid command.

 The command sent is longer than 58 characters.

 disk_error/33_SYNTAX_ERROR disk_error/33_SYNTAX_ERROR

 NUMBER
 33

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 Invalid file name.

 Pattern matching is invalidly used in the OPEN or SAVE command.

 disk_error/34_SYNTAX_ERROR disk_error/34_SYNTAX_ERROR

 NUMBER
 34

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 No file given.

 The file name was left out of a command or the DOS does not recognize it
 as such. Typically, a colon (:) has been left out of the command.

 disk_error/39_SYNTAX_ERROR disk_error/39_SYNTAX_ERROR

 NUMBER
 39

 MESSAGE
 SYNTAX ERROR

 DESCRIPTION
 Invalid command.

 This error may result if the command sent to command channel (secondary
 address 15) is unrecognized by the DOS.

 disk_error/50_RECORD_NOT_PRESENT disk_error/50_RECORD_NOT_PRESENT

 NUMBER
 50

 MESSAGE
 RECORD NOT PRESENT

 DESCRIPTION
 Result of disk reading past the last record through INPUT#, or GET#
 commands. This message will also occur after positioning to a record
 beyond end of file in a relative file. If the intent is to expand the
 file by adding the new record (with a PRINT# command), the error message
 may be ignored. INPUT or GET should not be attempted after this error is
 detected without first repositioning.

 disk_error/51_OVERFLOW_IN_RECORD disk_error/51_OVERFLOW_IN_RECORD

 NUMBER
 51

 MESSAGE
 OVERFLOW IN RECORD

 DESCRIPTION
 PRINT# statement exceeds record boundary. Information is truncated.
 Since the carriage return which is sent as a record terminator is
 counted in the record size, this message will occur if the total
 characters in the record (including the final carriage return) exceeds
 the defined size.

75

 disk_error/52_FILE_TOO_LARGE disk_error/52_FILE_TOO_LARGE

 NUMBER
 52

 MESSAGE
 FILE TOO LARGE

 DESCRIPTION
 Record position within a relative file indicates that disk overflow will
 result.

 disk_error/60_WRITE_FILE_OPEN disk_error/60_WRITE_FILE_OPEN

 NUMBER
 60

 MESSAGE
 WRITE FILE OPEN

 DESCRIPTION
 This message is generated when a write file that has not been closed is
 being opened for reading.

 disk_error/61_FILE_NOT_OPEN disk_error/61_FILE_NOT_OPEN

 NUMBER
 61

 MESSAGE
 FILE NOT OPEN

 DESCRIPTION
 This message is generated when a file is being accessed that has not
 been opened in the DOS. Sometimes, in this case, a message is not
 generated; the request simply ignored.

 disk_error/62_FILE_NOT_FOUND disk_error/62_FILE_NOT_FOUND

 NUMBER
 62

 MESSAGE
 FILE NOT FOUND

 DESCRIPTION
 The requested file does not exist on the indicated drive.

 disk_error/63_FILE_EXISTS disk_error/63_FILE_EXISTS

 NUMBER
 63

 MESSAGE
 FILE EXISTS

 DESCRIPTION
 The file name of the file being created already exists on the disk.

 disk_error/64_FILE_TYPE_MISMATCH disk_error/64_FILE_TYPE_MISMATCH

 NUMBER
 64

 MESSAGE
 FILE TYPE MISMATCH

 DESCRIPTION
 The file type does not match the file type in the directory entry for
 the requested file.

 disk_error/65_NO_BLOCK disk_error/65_NO_BLOCK

 NUMBER
 65

 MESSAGE
 NO BLOCK

 DESCRIPTION

76

 This message occurs in conjunction with the B-A command. It indicates
 that the block to be allocated has been previously allocated. The
 parameters indicate the track and sector available with the next highest
 number. If the parameters are zero (0), then all blocks higher in number
 are in use.

 disk_error/66_ILLEGAL_TRACK_AND_SECTOR disk_error/66_ILLEGAL_TRACK_AND_SECTOR

 NUMBER
 66

 MESSAGE
 ILLEGAL TRACK AND SECTOR

 DESCRIPTION
 The DOS has attempted to access a track or block which does not exist in
 the format being used. This may indicate a problem reading the pointer
 to the next block.

 disk_error/67_ILLEGAL_SYSTEM_T_OR_S disk_error/67_ILLEGAL_SYSTEM_T_OR_S

 NUMBER
 67

 MESSAGE
 ILLEGAL SYSTEM T OR S

 DESCRIPTION
 This special error message indicates an illegal system track or sector.

 disk_error/70_NO_CHANNEL disk_error/70_NO_CHANNEL

 NUMBER
 70

 MESSAGE
 NO CHANNEL

 DESCRIPTION
 No channel available.

 The requested channel is not available, or all channels are in use. A
 maximum of five sequential files may be opened at one time to the DOS.
 Direct access channels may have six opened files.

 disk_error/71_DIRECTORY_ERROR disk_error/71_DIRECTORY_ERROR

 NUMBER
 71

 MESSAGE
 DIRECTORY ERROR

 DESCRIPTION
 The BAM (Block Availability Map) does not match the internal count.
 There is a problem in the BAM allocation or the BAM has been overwritten
 in DOS memory. To correct this problem reinitialize the disk to restore
 the BAM in memory. Some active files may be terminated by the corrective
 action.

 disk_error/72_DISK_FULL disk_error/72_DISK_FULL

 NUMBER
 72

 MESSAGE
 DISK FULL

 DESCRIPTION
 Either the blocks on the disk are used or the directory is at its entry
 limit. DISK FULL is sent when two blocks are available on the 1541 to
 allow the current file to be closed.

 disk_error/73_DOS_MISMATCH disk_error/73_DOS_MISMATCH

 NUMBER
 73

 MESSAGE
 DOS MISMATCH

77

 DESCRIPTION
 DOS 1 and 2 are read compatible but not write compatible. Disks may be
 interchangeably read with either DOS, but a disk formatted on one
 version cannot be written upon with the other version because the format
 is different. This error is displayed whenever an attempt is made to
 write upon a disk which has been formatted in a non-compatible format.
 (A utility routine is available to assist in converting from one format
 to another.) This message may also appear after power up.

 NOTES

 Error number 73 in CBM DOS V2.6 1541.

 disk_error/74_DRIVE_NOT_READY disk_error/74_DRIVE_NOT_READY

 NUMBER
 74

 MESSAGE
 DRIVE NOT READY

 DESCRIPTION
 An attempt has been made to access the Floppy Disk Drive without any
 disk present.

BASIC ABBREVIATIONS
To obtain Basic keywords without having to type the whole command, press the
letter(s) on the left and then shift key and the letter on the right.
The shifted character appears as a graphics character but when the line is
listed, the abbreviation will be expanded out into the full word.
The abbreviation for a keyword is generally the first letter of the keyword
and the second letter shifted, but this may vary.

 Keyword First letter(s) Shifted Letter
===
 ABS A R
 ASC A S
 ATN A T
 AUTO A U
 BACKUP B A
 BOX B O
 CHAR CH A
 CHR$ C H
 CIRCLE C I
 CLOSE CL O

 CLR C L
 CMD C M
 COLLECT COL L
 COLOR CO L
 CONT C O
 COPY CO P
 COS none
 DATA D A
 DEC none
 DEF FN D E

 DELETE DE L
 DIM D I
 DIRECTORY DI R
 DLOAD D L
 DO none
 DRAW D R
 DSAVE D S
 END E N
 ERR$ E R
 EXP E X

 FOR F O
 FRE F R
 GET G E
 GET# none
 GETKEY GETK E
 GOSUB GO S

78

 GOTO G O
 GRAPHIC G R
 GSHAPE G S
 HEADER HE A

 HELP HE L
 HEX$ H E
 IF none
 INPUT none
 INPUT# I N
 INSTR IN S
 INT none
 JOY J O
 KEY K E
 LEFT$ LE F

 LEN none
 LET L E
 LIST L I
 LOAD L O
 LOCATE LO C
 LOG none
 LOOP LO O
 MID$ M I
 MONITOR M O
 NEW none

 NEXT N E
 ON..GOSUB ON..GO S
 ON..GOTO ON..G O
 OPEN O P
 PAINT P A
 PEEK P E
 POKE P O
 POS none
 PRINT ?
 PRINT USING ?US I

 PRINT# P R
 PUDEF P U
 RCLR R C
 RDOT R D
 READ R E
 REM none
 RENAME RE N
 RENUMBER REN U
 RESTORE RE S
 RESUME RES U

 RETURN R T
 RGR R G
 RIGHT$ R I
 RLUM R L
 RND R N
 RUN R U
 SAVE S A
 SCALE SC A
 SCNCLR S C
 SCRATCH SC R

 SGN S G
 SIN S I
 SOUND S O
 SPC S P
 SQR S Q
 SSHAPE S S
 STOP S T
 STR$ ST R
 SYS S Y
 TAB(T A

 TAN none
 TRAP T R
 TROFF TRO F
 TRON TR O
 UNTIL U N
 USR U S
 VAL none
 VERIFY V E
 VOL V O

79

 WAIT W A

 WHILE W H

 PETASCII CODES

80

81

Codes 192-223 are same as 96-127.
Codes 224-254 are same as 160-190.
Code 255 is the same as code 126.

Code 5 appears between quotes as code 69, but reversed.
Code 28 appear between quotes as code 92, but reversed.
Codes 30-31 appear between quotes as codes 94-95, but reversed.
Code 129 appears between quotes as code 97, but reversed.
Code 144 appears between quotes as code 112, but reversed.
Codes 149-156 appear between quotes as codes 117-124, but reversed.
Codes 158-159 appear between quotes as codes 126-127, but reversed.

Examples:
print chr$(130);"this is blinking!"

print chr$(14);"everything is locase"

82

MUSICAL NOTE TABLE
 The table below contains the sound register values of six octaves of
 notes for PAL and NTSC television standards. The sound register values
 To use the first note in the table (A - sound register value 7) use the 7
 as a second number after the SOUND command - SOUND 1,7,30.

 ==
 NOTE REGISTER (PAL) REGISTER (NTSC) FREQUENCY (HZ)
 ==
 A 7 7 110.0
 #A 64 64 116.6
 H 118 118 123.5
 --
 C 169 169 130.9
 #C 217 217 138.6
 D 262 262 146.9
 #D 305 305 155.6
 E 345 345 164.9
 F 383 383 174.7
 #F 419 419 185.0
 G 453 453 196.0
 #G 485 485 207.7
 A 516 516 220.0
 #A 544 544 233.1
 H 571 571 247.0
 --
 C 596 597 261.7
 #C 620 621 277.2
 D 643 643 293.7
 #D 664 665 311.2
 E 685 685 329.7
 F 704 704 349.3
 #F 722 722 370.0
 G 739 739 392.0
 #G 755 755 415.4
 A 770 770 440.0
 #A 784 784 466.2
 H 798 798 493.9
 --
 C 810 810 523.3
 #C 822 822 554.4
 D 834 834 587.4
 #D 844 844 622.3
 E 854 854 659.3
 F 864 864 698.5
 #F 873 873 740.0
 G 881 881 784.0
 #G 889 889 830.7
 A 897 897 880.0
 #A 904 904 932.4
 H 911 911 987.8
 --
 C 917 917 1046.6
 #C 923 923 1108.8
 D 929 929 1174.7
 #D 934 934 1244.6
 E 939 939 1318.6
 F 944 944 1397.0
 #F 948 948 1480.0
 G 953 953 1568.0
 #G 957 957 1661.3
 A 960 960 1760.0
 #A 964 964 1864.7
 H 967 967 1975.6
 --
 C 971 971 2093.0
 #C 974 974 2217.5
 D 976 976 2349.4
 #D 979 979 2489.1
 E 982 982 2637.1
 F 984 984 2793.9
 #F 986 986 2960.0
 G 988 988 3136.0
 #G 990 990 3322.5
 A 992 992 3520.0
 #A 994 994 3729.3
 H 996 996 3951.1

83

AUTHORS
 Janne Peräaho E-mail: amity@surfeu.fi

 Pyrytie 11 A 9
 90630 Oulu
 Finland

 Thanks to Mike Dailly for converting the manual to HTML format.

Anders Persson http://listen.to/boray

Thanks to Brian Flood for the Plus/4 and to Janne for the cooperation on this new
version of your manual.

ALL DOCUMENTS

This document is part of a document package intended for Plus/4, C16 and C116 users.
The documents included are:

● "basic35.pdf", This document - Janne's original manual (more or less).
● "short35.pdf", A basic quick guide.
● "advanced.pdf", The Hardware and Advanced Basic programming.
● "tedmon.pdf", A short description of the built in machine language monitor.

REFERENCES
Commodore 16 Käyttäjän opas, Commodore 16 User Manual, Commodore 64 Käyttäjän opas,
Kaikki kuusnelosesta, 3. painos, Commodore Vic-20 Swedish User Manual, Commodore
plus/4 and c16 memory map.

84

